在日常的學(xué)習(xí)、工作、生活中,肯定對(duì)各類范文都很熟悉吧。相信許多人會(huì)覺(jué)得范文很難寫?
等腰三角形教案 1
一、教學(xué)內(nèi)容
本單元教學(xué)三角形的相關(guān)知識(shí),這是在學(xué)生直觀認(rèn)識(shí)過(guò)三角形的基礎(chǔ)上教學(xué)的,也是以后學(xué)習(xí)三角形面積計(jì)算的基礎(chǔ)。內(nèi)容分五段安排:第一段通過(guò)例1、例2第22~25頁(yè)形成三角形的概念教學(xué)三角形的基本特征,三角形的高和底;第二段通過(guò)第26~27頁(yè)教學(xué)三角形的分類,認(rèn)識(shí)銳角三角形、直角三角形和鈍角三角形;第三段第28~29頁(yè)通過(guò)例4教學(xué)三角形的內(nèi)角和;第四段通過(guò)第30~32頁(yè)例5、例6認(rèn)識(shí)等腰三角形和等邊三角形及其特征。第五段第33~34頁(yè)單元練習(xí)。全面整理知識(shí),突出三角形的分類以及關(guān)于邊和角的性質(zhì)。
教材中的思考題有較大的思維容量,能促進(jìn)學(xué)生進(jìn)一步理解并應(yīng)用三角形的知識(shí)。編寫的三篇“你知道嗎”介紹三角形的穩(wěn)定性、制作雪花圖案的方法和埃及的金字塔,能激發(fā)學(xué)生學(xué)習(xí)三角形的興趣,豐富對(duì)三角形的認(rèn)識(shí)。
二、教材編寫特點(diǎn)和教學(xué)建議
1、讓學(xué)生在“做”圖形的活動(dòng)中感受三角形的形狀特點(diǎn)和結(jié)構(gòu)特征。
空間與圖形的概念教學(xué),一般要讓學(xué)生經(jīng)歷感知——表象——形成概念的過(guò)程,教材注意按學(xué)生的認(rèn)識(shí)規(guī)律安排教學(xué)過(guò)程。學(xué)生在第一學(xué)段直觀認(rèn)識(shí)了三角形,本單元繼續(xù)教學(xué)三角形的知識(shí),教材經(jīng)常采用“活動(dòng)——體驗(yàn)”的教學(xué)策略,即組織學(xué)生“做”圖形,讓他們?cè)谧龅倪^(guò)程中體會(huì)圖形的特點(diǎn),主動(dòng)構(gòu)建對(duì)圖形的比較深入的認(rèn)識(shí)。
(1) “做”三角形,感受邊、角和頂點(diǎn)。第22頁(yè)例題教學(xué)三角形的邊、角和頂點(diǎn),分三個(gè)層次編寫:首先呈現(xiàn)一幅宜昌長(zhǎng)江大橋的照片,引起學(xué)生對(duì)三角形的回憶,并聯(lián)系生活里的三角形進(jìn)行交流,感知三角形;;然后安排學(xué)生想辦法做每人至少“做”一個(gè)三角形并在小組里交流進(jìn)一步強(qiáng)化表象;;最后講解三角形的邊、角和頂點(diǎn)。
學(xué)生“做”三角形并不難,做的方法必定是多樣的。用小棒擺、在釘子板上圍、在方格紙上畫三角形在第一學(xué)段都曾經(jīng)做過(guò),現(xiàn)在學(xué)生還可能剪、折、拼……“做”三角形的目的不在結(jié)果,要注重學(xué)生在做的過(guò)程中是怎樣想的、怎樣做的,把精力放在建立邊、角和頂點(diǎn)等概念上。所以,交流的時(shí)候要分析各種做法的共同點(diǎn),如用三根小棒、三段細(xì)繩、三條線段……才能“做”成三角形,三角形有三條邊;小棒、細(xì)繩、線段……必須兩兩相連,三角形有三個(gè)頂點(diǎn)和三個(gè)角。
(2)圍三角形,體會(huì)兩條邊的長(zhǎng)度和必須大于第三邊。《標(biāo)準(zhǔn)》要求:
通過(guò)觀察、操作,了解三角形的兩邊之和大于第三邊。這是新課程里增加的教學(xué)內(nèi)容,第23頁(yè)例題教學(xué)這個(gè)知識(shí)。教材通過(guò)學(xué)生的具體體驗(yàn)來(lái)使學(xué)生知道這一點(diǎn)。首先,為學(xué)生提供四根長(zhǎng)度分別是10cm、6cm、5cm、4cm的小棒,向?qū)W生提出問(wèn)題:任意選三根小棒,能圍成一個(gè)三角形嗎?然后讓學(xué)生在操作中發(fā)現(xiàn)有時(shí)能圍成三角形,有時(shí)圍不成三角形,并直覺(jué)感受這是為什么。最后通過(guò)比較每次選用的三根小棒的長(zhǎng)度,找到原因、理解規(guī)律。
例題的編寫特點(diǎn)是不把知識(shí)結(jié)論呈現(xiàn)給學(xué)生,而讓學(xué)生在“做”圖形活動(dòng)中發(fā)現(xiàn)現(xiàn)象、研究原因、體會(huì)規(guī)律。因此,教學(xué)這道例題時(shí)要注意三點(diǎn):第一,課前作好充分的物質(zhì)準(zhǔn)備,力求讓每一名學(xué)生都有長(zhǎng)10cm、6cm、5cm、4cm的四根小棒。第二,課上要讓學(xué)生自由地選擇小棒,充分地圍,經(jīng)歷圍成和圍不成三角形的過(guò)程,并給學(xué)生提供思考“為什么”的時(shí)間。第三,要引導(dǎo)學(xué)生從直覺(jué)感受上升到理性認(rèn)識(shí)。在用小棒圍的時(shí)候,他們的直覺(jué)感受是如果兩根較短的小棒的另一端能夠碰到一起,就圍成了三角形;如果不能碰到一起,就圍不成三角形。這種直覺(jué)感受是必要的,但不是最終的。要在直覺(jué)感受的基礎(chǔ)上,進(jìn)一步對(duì)三根小棒的長(zhǎng)度進(jìn)行分析研究,這才是“數(shù)學(xué)化”的過(guò)程,才能在獲得數(shù)學(xué)結(jié)論的同時(shí)又學(xué)習(xí)用數(shù)學(xué)的方法進(jìn)行思考。
(3)對(duì)圖形量、剪、折,親身感知并認(rèn)識(shí)體會(huì)等腰三角形、等邊三角形的特點(diǎn)。第30頁(yè)的兩道例題分別教學(xué)等腰三角形和等邊三角形,認(rèn)識(shí)等腰三角形和等邊三角形,首先要感知各自的特點(diǎn),教材注意突出教學(xué)的這一過(guò)程。都分三個(gè)層次教學(xué):
第一層次是通過(guò)學(xué)生量三角形邊的長(zhǎng)度,理解“等腰”“等邊”的含義;第二層次是仿照例題示范的方法剪出一個(gè)等腰三角形和一個(gè)等邊三角形,繼續(xù)體會(huì)它們的邊的長(zhǎng)度關(guān)系;第三層次是給出等腰三角形各部分的名稱,發(fā)現(xiàn)等腰三角形、等邊三角形的角的大小關(guān)系。其中第二層次的教學(xué)比較難。兩道例題里“茄子”和“白菜”提的問(wèn)題不同,前一道例題的問(wèn)題是“用下面的方法剪成的三角形是等腰三角形嗎”,因?yàn)閷W(xué)生容易看懂圖文結(jié)合表述的剪法,通過(guò)這個(gè)問(wèn)題引導(dǎo)學(xué)生關(guān)注到兩條腰是同時(shí)剪的,長(zhǎng)度肯定相同。后一道例題的問(wèn)題是“你會(huì)像下面這樣剪出一個(gè)等邊三角形嗎”,因?yàn)閷W(xué)生不容易看懂教材展示的方法,教材希望通過(guò)這個(gè)問(wèn)題引導(dǎo)學(xué)生先研究剪法、弄懂剪法。關(guān)鍵在找到那個(gè)紅色的點(diǎn),先對(duì)折又斜折是為了讓三條邊的長(zhǎng)度都相同。
2、從已有經(jīng)驗(yàn)中提煉數(shù)學(xué)概念。
在具體的感性材料里提取本質(zhì)特征,形成理性認(rèn)識(shí)是概念教學(xué)的渠道之一。豐富的感性經(jīng)驗(yàn)與清晰地認(rèn)識(shí)特征是建立正確概念的前提。
(1)循序漸進(jìn),幫助學(xué)生逐步理解三角形的高。三角形的底和高是三角形里的重要概念,為了讓學(xué)生自己感受底和高,教材用人字梁為素材,利用學(xué)生在生活中對(duì)人字梁“高度”的認(rèn)識(shí)進(jìn)行測(cè)量,感受三角形人字梁的高, 第24頁(yè)例題、“試一試”以及“想想做做”里的部分習(xí)題把三角形高的教學(xué)分成四步進(jìn)行:
第一步讓學(xué)生量出人字梁圖形的高度是多少厘米。這里講的“高”度還是生活中的高,是從上往下豎直的距離。雖然與數(shù)學(xué)里的高含義不同,但也有相似的地方——垂直的、最短的。設(shè)計(jì)這一步教學(xué)的目的是喚醒已有的生活經(jīng)驗(yàn),營(yíng)造認(rèn)識(shí)三角形高的基礎(chǔ)。第二步結(jié)合圖形講述三角形的高。學(xué)生對(duì)教材里的一段話,既要聯(lián)系人字梁的高來(lái)體會(huì),又要超越人字梁這個(gè)具體實(shí)物比較概括地理解。聯(lián)系人字梁的高能降低理解概念內(nèi)涵的難度,超越人字梁具體實(shí)物才能形成真正的數(shù)學(xué)概念。教材表述的是三角形高的描述式定義,描述了高的位置,描述了畫高的方法。教學(xué)時(shí)可以把教師邊畫邊講與學(xué)生邊描邊體會(huì)相結(jié)合,重在對(duì)概念的理解,不要死記硬背。第三步通過(guò)“試一試”擴(kuò)大概念的外延。數(shù)學(xué)里平面圖形的高的本質(zhì)屬性是“垂直”而不是“豎直”,豎直是“從上往下”,垂直是“相交成直角”。例題教學(xué)三角形的高先從豎直的位置講起,“試一試”舉出各種擺放位置的、不同類型的三角形以及不同邊上的高,要求學(xué)生測(cè)量三角形的高和底的長(zhǎng)度,使學(xué)生在操作中進(jìn)一步體會(huì)高的概念,認(rèn)識(shí)只要是從一個(gè)頂點(diǎn)到對(duì)邊的垂直線段就是三角形的高,感受底和高的相應(yīng)關(guān)系,進(jìn)一步理解三角形底和高的意義。這樣讓學(xué)生準(zhǔn)確地理解概念的內(nèi)涵,全面地把握概念的外延,深刻地體會(huì)高與底之間的對(duì)應(yīng)聯(lián)系。第四步通過(guò)“想想做做”P25第1題的畫高練習(xí),進(jìn)一步感受描述式定義,鞏固對(duì)高的理解。其中最右邊的是直角三角形,它的兩條直角邊互為高和底,學(xué)生在畫高的時(shí)候能夠體會(huì)到這一點(diǎn)。另外讓學(xué)生閱讀資料了解三角形的穩(wěn)定性三角形的穩(wěn)定性是其重要特性,教材安排了“你知道嗎”,讓學(xué)生通過(guò)閱讀并做實(shí)驗(yàn)體會(huì)這一特性。這里注意一點(diǎn)本冊(cè)教材知識(shí)要求學(xué)生畫請(qǐng)指定底邊的高,這些高都是在三角形里面的,三角形外的高不做要求。還有就是在作圖的時(shí)候一定要注意一些作圖規(guī)范。
(2)聯(lián)系對(duì)直角、銳角、鈍角的認(rèn)識(shí),引導(dǎo)學(xué)生探索三角形的分類。三角形的分類教學(xué),必須使學(xué)生在充分的感知中體會(huì)三個(gè)內(nèi)角大小有幾種情況,理解三角形分類的方法及分類的合理性。第26頁(yè)例題讓學(xué)生在給角分類的活動(dòng)中體會(huì)三角形的分類。首先呈現(xiàn)了6個(gè)不同形狀的三角形,要求學(xué)生仔細(xì)觀察各個(gè)三角形的每個(gè)角是什么角,并把觀察結(jié)果填在預(yù)設(shè)的表格里。然后引導(dǎo)學(xué)生分析研究表格里的數(shù)據(jù)信息,發(fā)現(xiàn)有些三角形的三個(gè)角都是銳角,有些三角形里有一個(gè)直角和兩個(gè)銳角,有些三角形里有一個(gè)鈍角和兩個(gè)銳角,從而引發(fā)可以給三角形按角分類,獲得直角三角形、銳角三角形和鈍角三角形的認(rèn)識(shí),掌握不同三角形的特點(diǎn)。準(zhǔn)確而精煉的語(yǔ)言總結(jié)了什么樣的`三角形是銳角三角形、直角三角形和鈍角三角形。最后還用集合圖表達(dá)三角形的分類以及各類三角形與三角形整體的關(guān)系。
教學(xué)三角形的分類要特別注意三點(diǎn):第一,必須組織學(xué)生積極參與分類活動(dòng),在獨(dú)立思考的基礎(chǔ)上合作交流,逐漸形成共識(shí)。第二,要扣緊概念的關(guān)鍵,讓學(xué)生理解為什么銳角三角形強(qiáng)調(diào)三個(gè)角都是銳角,直角三角形和鈍角三角形只講一個(gè)直角或一個(gè)鈍角,從而掌握判斷時(shí)的思考要點(diǎn)。如第33頁(yè)第2題里左邊和中間的三角形能確定它們分別是鈍角三角形和直角三角形,因?yàn)樵趫D中分別看到了1個(gè)鈍角和1個(gè)直角。右邊的三角形只看到1個(gè)銳角,不能確定它是什么三角形。第三,要用好第27頁(yè)“想想做做”第3~7題,讓學(xué)生在圖形的變換中加強(qiáng)對(duì)各類三角形的認(rèn)識(shí)。認(rèn)識(shí)了三角形的分類,還要通過(guò)具體的觀察、判斷和操作、畫圖等活動(dòng)進(jìn)一步鞏固對(duì)不同三角形的認(rèn)識(shí)。教材在這方面有比較多的安排。例如P27的“想想做做”第3~7題,分別讓學(xué)生判斷各是什么三角形,鞏固對(duì)各類三角形的認(rèn)識(shí);圍出、折出、剪出和畫出指定的三角形,使各類三角形的表象再現(xiàn)。特別是第7題是一道開(kāi)放題,可以讓學(xué)生通過(guò)畫一畫、說(shuō)一說(shuō),互相交流,加深對(duì)各類三角形的認(rèn)識(shí),掌握各類三角形的特征。
3、從特殊到一般,通過(guò)實(shí)驗(yàn)得出三角形的內(nèi)角和是180°。
讓學(xué)生“了解三角形的內(nèi)角和是180°”是《標(biāo)準(zhǔn)》規(guī)定的教學(xué)內(nèi)容和教學(xué)要求,這里講的“了解”不是接受和知道,而是發(fā)現(xiàn)并簡(jiǎn)單應(yīng)用。教材安排三角形內(nèi)角和的學(xué)習(xí),主要讓學(xué)生由特殊到一般,通過(guò)自己的探索活動(dòng)認(rèn)識(shí)與掌握三角形內(nèi)角和是180°。
(1)第28頁(yè)教學(xué)三角形的內(nèi)角和,采用了“質(zhì)疑——解疑”的教學(xué)策略,實(shí)驗(yàn)是策略的核心,是解疑的手段。
首先計(jì)算同一塊三角尺上的3個(gè)角的度數(shù)和。由于學(xué)生在四年級(jí)(上冊(cè))教材里已經(jīng)知道了兩塊三角尺上的每一個(gè)角的度數(shù),所以能夠很快求得每塊三角尺的3個(gè)角的和都是180°。并由此產(chǎn)生疑問(wèn):其他三角形的內(nèi)角和也是180°嗎?由此產(chǎn)生學(xué)習(xí)的愿望。接著安排學(xué)生通過(guò)實(shí)驗(yàn)解疑,用實(shí)驗(yàn)的方法驗(yàn)證、確認(rèn)三角形內(nèi)角和的結(jié)論。把一個(gè)三角形的3個(gè)角拼在一起,從拼成的是平角得出3個(gè)角的度數(shù)和是180°。教材要求小組合作,剪出不同類型的三角形進(jìn)行實(shí)驗(yàn),通過(guò)實(shí)驗(yàn)獲得直接認(rèn)識(shí),驗(yàn)證自己的猜想,從而確認(rèn)三角形的三個(gè)內(nèi)角的和是180°,得出結(jié)論。因此,實(shí)驗(yàn)的對(duì)象有較大的包容性,實(shí)驗(yàn)的結(jié)論有很強(qiáng)的可靠性。學(xué)生會(huì)完全信服三角形的內(nèi)角和是180°這一普遍規(guī)律。最后并通過(guò)“試一試”,應(yīng)用三角形內(nèi)角和求未知角的度數(shù),鞏固三角形內(nèi)角和的結(jié)論。
(2)為了讓學(xué)生深刻地理解三角形內(nèi)角和的規(guī)律。在認(rèn)識(shí)三角形內(nèi)角和以后,教材通過(guò)應(yīng)用促進(jìn)學(xué)生掌握這一內(nèi)容,并應(yīng)用解決問(wèn)題。如P29.“想想做做”1~3題,應(yīng)用三角形內(nèi)角和求未知角的度數(shù),在三角形的變換中判斷內(nèi)角和各是多少,鞏固所獲得的結(jié)論;?!跋胂胱鲎觥鼻擅畹卦O(shè)計(jì)了兩道辨析題一道是第2題:一塊三角尺的內(nèi)角和180°,兩塊同樣的三角尺拼成的一個(gè)大三角形的內(nèi)角和又是多少呢?另一道是第3題:正方形內(nèi)角和360°,對(duì)折出的三角形內(nèi)角和180°,再對(duì)折成的小三角形內(nèi)角和又是多少呢?解答這兩道題時(shí),學(xué)生的思考會(huì)在180°和360°以及180°和90°不同答案上碰撞,碰撞的結(jié)果是進(jìn)一步認(rèn)識(shí)三角形的內(nèi)角和是一個(gè)普遍規(guī)律,不因三角形的大小而改變,不因拼、折等圖形變換而改變。另外,教材還從兩個(gè)方面引導(dǎo)學(xué)生應(yīng)用三角形的內(nèi)角和:一是根據(jù)三角形中已知的兩個(gè)角的度數(shù),求另一個(gè)角的度數(shù);二是解釋為什么直角三角形里只有1個(gè)直角,鈍角三角形里只有1個(gè)鈍角。第6題,通過(guò)思考一個(gè)三角形中最多有幾個(gè)鈍角或直角,并應(yīng)用三角形內(nèi)角和的知識(shí)合理解釋,加深認(rèn)識(shí)三角形內(nèi)角和及鈍角三角形、直角三角形的特征。
4、注意三角形知識(shí)的內(nèi)在聯(lián)系
三角形的分類是按角的大小為標(biāo)準(zhǔn)的,而等腰三角形和等邊三角形是以邊的長(zhǎng)度特點(diǎn)來(lái)定義的。不同特征的三角形中又存在內(nèi)在聯(lián)系,認(rèn)識(shí)三角形應(yīng)該讓學(xué)生了解這些聯(lián)系。在P31~32第2~4題里,就讓學(xué)生了解等腰三角形可以同時(shí)是直角三角形、銳角三角形或鈍角三角形,體會(huì)等腰三角形都是軸對(duì)稱圖形。P33第2題通過(guò)判斷,進(jìn)一步認(rèn)識(shí)鈍角三角形、直角三角形分別只有一個(gè)鈍角或直角,而每類三角形都有銳角,即只看一個(gè)銳角無(wú)法判斷是什么三角形。第3題使學(xué)生體會(huì)兩個(gè)一樣的直角三角形,可以拼成三角形,也可以拼成四邊形,而且可以有不同的拼法。第5題需要綜合本單元學(xué)習(xí)的三角形知識(shí),依據(jù)三角形邊長(zhǎng)之間的關(guān)系,選擇小棒按要求擺出等腰三角形和等邊三角形。第6題,要應(yīng)用對(duì)等邊三角形特征的認(rèn)識(shí)進(jìn)行解釋,第7題,讓學(xué)生觀察三角形判斷各是什么三角形,感受可以從不同角度判定一個(gè)三角形是什么三角形,體會(huì)知識(shí)之間的內(nèi)在聯(lián)系。
5.注意培養(yǎng)學(xué)生的空間觀念
觀察、舉例、做圖形感受三角形
在P22例題里,引導(dǎo)學(xué)生先觀察情景中的三角形,舉出日常生活里接觸過(guò)的三角形,加強(qiáng)三角形的表象,同時(shí)還要求學(xué)生做一個(gè)三角形,P23第1題也要求學(xué)生畫三角形,把表象轉(zhuǎn)化成具體的三角形再現(xiàn)出來(lái),形成三角形的空間形象。
學(xué)生在看、圍、折、剪等活動(dòng)中獲得各類三角形特征的直接體驗(yàn)
在空間與圖形的學(xué)習(xí)中,引導(dǎo)學(xué)生實(shí)際操作,具體感受所學(xué)圖形,積累對(duì)其形狀、大小、位置關(guān)系的的感性認(rèn)識(shí),可以發(fā)展空間觀念。教材在P27第2題通過(guò)觀察、判斷加強(qiáng)不同三角形形狀的直接感受,第3~6題讓學(xué)生圍、折、剪圖形,依據(jù)頭腦里的表象再現(xiàn)出相應(yīng)的圖形,可以培養(yǎng)空間觀念。第7題,需要依據(jù)三角形的特點(diǎn)進(jìn)行分析、判斷,知道可以分成兩個(gè)怎樣的三角形,才能有不同的分法。這些都有利于空間觀念的發(fā)展。
讓學(xué)生折一折、剪一剪、畫一畫掌握等腰三角形和等邊三角形的直觀形象
同樣地,在認(rèn)識(shí)等腰三角形和等邊三角形時(shí),也注重學(xué)生的動(dòng)手實(shí)踐,促進(jìn)空間觀念的發(fā)展。如P30、P31例中折一折、剪一剪,得出相應(yīng)的圖形,進(jìn)一步體驗(yàn)各自的特點(diǎn);P31“想想做做”第2~4題,也是動(dòng)手剪一剪、畫一畫圖形,并運(yùn)用對(duì)圖形特點(diǎn)的認(rèn)識(shí)辨析相關(guān)圖形,也是加強(qiáng)空間觀念的手段與方法。
等腰三角形的性質(zhì)教學(xué)設(shè)計(jì) 2
一、說(shuō)教材
1、教學(xué)主要內(nèi)容、前后聯(lián)系、地位和作用
本節(jié)課的內(nèi)容是冀教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書《數(shù)學(xué)》八年級(jí)(上)§15。5等腰三角形第一課時(shí),主要內(nèi)容是學(xué)習(xí)等腰三角形的兩條性質(zhì):“等邊對(duì)等角”和“三線合一”。
本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了三角形的有關(guān)概念和“認(rèn)識(shí)軸對(duì)稱圖形”的基礎(chǔ)上接著學(xué)習(xí)的。這節(jié)課的內(nèi)容不僅是對(duì)前面所學(xué)知識(shí)的運(yùn)用,也是今后證明角相等、線段相等及直線垂直的重要工具,它在教材中處于非常重要的地位。
2、教學(xué)目標(biāo)及依據(jù)
根據(jù)學(xué)生認(rèn)識(shí)基礎(chǔ)及教學(xué)內(nèi)容的特點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》確定本節(jié)課的教學(xué)目標(biāo)為:
(1)使學(xué)生了解等腰三角形的有關(guān)概念,掌握等腰三角形的性質(zhì),
(2)通過(guò)折紙實(shí)驗(yàn)探索等腰三角形的性質(zhì),讓學(xué)生進(jìn)一步經(jīng)歷觀察、實(shí)驗(yàn)、歸納、推理、交流等活動(dòng),體驗(yàn)數(shù)學(xué)證明的必要性,培養(yǎng)學(xué)生數(shù)學(xué)說(shuō)理的習(xí)慣。
(3)通過(guò)例題的教學(xué),學(xué)會(huì)利用代數(shù)法求解幾何問(wèn)題,培養(yǎng)學(xué)生學(xué)數(shù)學(xué)應(yīng)用數(shù)學(xué)的意識(shí)。
(4)了解等邊三角形的概念并探索其性質(zhì)
3、教學(xué)重難點(diǎn)及依據(jù)
等腰三角形的性質(zhì)在今后應(yīng)用較廣,但“三線合一”這一性質(zhì)的條件和結(jié)論容易混淆,學(xué)生不會(huì)靈活運(yùn)用。因此本節(jié)課的重難點(diǎn)是:
(1)重點(diǎn):等腰三角形等邊對(duì)等角性質(zhì)是本節(jié)教學(xué)的重點(diǎn)。
(2)難點(diǎn):等腰三角形“三線合一”性質(zhì)的靈活運(yùn)用。
二、學(xué)情分析
學(xué)生以前接觸過(guò)等腰三角形有關(guān)知識(shí),并且學(xué)生已經(jīng)歷畫圖方法感知“三線合一”這一性質(zhì),所以等要三角形的這兩個(gè)性質(zhì)學(xué)生可以通過(guò)折疊發(fā)現(xiàn)出來(lái),但對(duì)“三線合一”中的“三線”指代學(xué)生可能出現(xiàn)混淆情況,且對(duì)“三線合一”這一性質(zhì)“三線合一”這一性質(zhì)不夠重視,但它是本節(jié)課的難點(diǎn)又是今后用得較廣泛的性質(zhì)之一。由于本班中學(xué)生各科的基礎(chǔ)都較差,合作、交流的意識(shí)不強(qiáng),不敢提問(wèn),不善于探索與實(shí)踐,所以教師要給予適當(dāng)?shù)囊龑?dǎo)、啟發(fā),要多加激勵(lì)和鼓勵(lì)。
三、說(shuō)教法、學(xué)法
初中生的觀察、記憶、邏輯思維等能力逐步增強(qiáng),他們能夠在觀察中注意到事物的細(xì)微處,具備了一定的邏輯推理能力和抽象地表達(dá)事物本質(zhì)特征的能力,模仿力強(qiáng),但七年級(jí)的學(xué)生思維往往要依賴于直觀具體的形象,而學(xué)生剛學(xué)過(guò)軸對(duì)稱圖形,對(duì)軸對(duì)稱圖形的分析想對(duì)比較好。
根據(jù)學(xué)生這一年齡特征和這節(jié)課的內(nèi)容特點(diǎn),在教師的組織、引導(dǎo)、點(diǎn)撥啟發(fā)下,采用直觀教學(xué)法,探究、發(fā)現(xiàn)的教學(xué)方法,讓學(xué)生主動(dòng)參與,積極動(dòng)手、動(dòng)腦、動(dòng)口,操作實(shí)驗(yàn)、直觀感知、自主探索、合作交流,通過(guò)師生互動(dòng)、情感交流,培養(yǎng)學(xué)生多觀察、動(dòng)腦想、大膽猜的研討式學(xué)習(xí)模式,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。
教具準(zhǔn)備:多媒體計(jì)算機(jī)、課件、投影機(jī)。
學(xué)具準(zhǔn)備:三角板、透明紙片、剪刀、鉛筆。
四、說(shuō)教學(xué)程序
(一)復(fù)習(xí)回顧,引入新課
1、因?yàn)橐呀?jīng)學(xué)過(guò)有兩邊相等的三角形是等腰三角形,所以讓學(xué)生在事先準(zhǔn)備好的半透明紙上畫一個(gè)等腰三角形,并標(biāo)上字母A、B、C。
選一位學(xué)生畫好的等腰三角形投影到大屏幕上,結(jié)合學(xué)生的圖形介紹等腰三角形的一些有關(guān)概念。
〔設(shè)計(jì)意圖〕從一開(kāi)始就提供給學(xué)生動(dòng)手操作的空間和時(shí)間讓他們?cè)跓o(wú)意中,了解等腰三角形的一些概念,同時(shí)覺(jué)得有一種輕松感。
3、讓學(xué)生做練習(xí),在已知的等腰三角形ABC中,畫底邊BC上的中線和高以及頂角的平分線,并量一量課本圖中兩個(gè)底角的度數(shù)。
〔設(shè)計(jì)意圖〕讓學(xué)生通過(guò)畫圖、測(cè)量,先整體感知等腰三角形“等邊對(duì)等角”,“三線合一”這兩條性質(zhì),然后再經(jīng)過(guò)后面的動(dòng)手、動(dòng)腦折疊等腰三角形的實(shí)驗(yàn)來(lái)驗(yàn)證等腰三角形的性質(zhì)。使學(xué)生初步體會(huì)到:觀察實(shí)驗(yàn)的方法可以給我們帶來(lái)一個(gè)直觀形象的數(shù)學(xué)結(jié)論。
(二)動(dòng)手實(shí)驗(yàn),合作探究
1、讓同桌或前后的同學(xué)互相檢查對(duì)方剛才所畫的三角形是否“等腰”。然后把各自畫好的等腰三角形剪下來(lái),并把紙片對(duì)折,讓兩腰AB、AC重疊在一起,折痕為AD。最后問(wèn)同學(xué):你發(fā)現(xiàn)了什么現(xiàn)象?你能用自己的語(yǔ)言說(shuō)出來(lái)嗎?
〔設(shè)計(jì)意圖〕通過(guò)富有激勵(lì)和挑戰(zhàn)的語(yǔ)句來(lái)激發(fā)、引導(dǎo)學(xué)生。
2、留給學(xué)生充分的時(shí)間觀察、思考、交流,然后互相補(bǔ)充,并請(qǐng)學(xué)生起來(lái)發(fā)言,同時(shí)老師用多媒體演示模型,并在大屏幕上顯示如下內(nèi)容:
發(fā)現(xiàn):(1)三角形是軸對(duì)稱圖形,折痕AD所在的直線是它的對(duì)稱軸。
(2)∠B=∠C。
(3)BD=CD,AD是底邊上的中線。
(4)∠ADB=∠ADC=90°,AD為底邊上的高。
(5)∠BAD=∠CAD,AD為頂角的平分線。
3、由學(xué)生用文字歸納結(jié)論(2),教師糾正并投影:等腰三角形的兩個(gè)底角想等。(簡(jiǎn)寫成“等邊對(duì)等角”)
師問(wèn):你能用數(shù)學(xué)語(yǔ)言表達(dá)這句話嗎?
學(xué)生:討論交流、發(fā)言。
投影:在△ABC中,因?yàn)锳B=AC,所以∠B=∠C。
4、問(wèn)學(xué)生你能用一句話來(lái)歸納結(jié)論(3)(4)(5)嗎?
教師提示:可聯(lián)系開(kāi)始所復(fù)習(xí)的練習(xí)(畫等腰三角形“三線合一”),接著用多媒體演示“三線合一”動(dòng)畫。
投影:等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合。(簡(jiǎn)稱“三線合一”)
〔設(shè)計(jì)意圖〕通過(guò)直觀感知、操作確認(rèn),有助于培養(yǎng)學(xué)生的合情推理和演繹推理能力,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的樂(lè)趣,逐步積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),經(jīng)歷自主探索和合作交流的過(guò)程,形成積極的學(xué)習(xí)態(tài)度和情感。
5、對(duì)比練習(xí)(補(bǔ)充):畫一個(gè)等腰三角形的一個(gè)底角的平分線及該角所對(duì)的中線和高,看看他們是否重合(即是否有“三線合一”這一性質(zhì))。
6、大家談?wù)劊赏瑢W(xué)們互相討論了解概念并探索其性質(zhì)。積極發(fā)揮學(xué)生的能動(dòng)性。
(三)初步應(yīng)用,鞏固拓展
例1已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度數(shù)。(投影顯示,P83例1)
生:交流、討論、口述。
師:板書解題過(guò)程(在黑板上寫)
解:因?yàn)锳B=AC。
所以∠C=∠B=80°
又∠A+∠B+∠C=180°
所以∠A=180—80—80 = 20°
引申練習(xí)(補(bǔ)充):已知在△ABC中AB=AC,∠A=30。求∠B和∠C的度數(shù)。(投影顯示)
生:交流、討論、并寫在紙上。
師:巡視,選兩位學(xué)生板演并講評(píng)。
小結(jié)(老師問(wèn)、學(xué)生答):
在等腰三角形中,
(1)已知一個(gè)角,就能求另外兩個(gè)角。
(2)頂角+2×底角=180°
(3)0°
師問(wèn):在一般的三角形中,已知一個(gè)角能求另外兩個(gè)角嗎?為什么等腰三角形可以?
生答:因?yàn)殡[含一個(gè)條件:兩個(gè)底角相等——等邊對(duì)等角。
例2。建筑工人在蓋房子的時(shí)候,要看房梁是否水平,可以用一塊等腰三角板放在梁上(如圖),從頂點(diǎn)系一重物的繩正好經(jīng)過(guò)三角板底邊中點(diǎn),房梁就是水平的,你能說(shuō)出為什么嗎?(投影顯示例2和圖形。)
學(xué)生思考,分組討論,交流并回答。
教師糾正,并投影顯示解答。
解:系重物的繩子正好經(jīng)過(guò)等腰三角形的底邊上的中點(diǎn),根據(jù)“三線合一”可以知道這條繩子也垂直于房梁,故房梁是水平的。
〔設(shè)計(jì)意圖〕通過(guò)本例讓學(xué)生對(duì)“三線合一”這一性質(zhì)進(jìn)一步得到鞏固,也讓學(xué)生體驗(yàn)到數(shù)學(xué)知識(shí)在現(xiàn)實(shí)生活中的應(yīng)用,培養(yǎng)學(xué)生的應(yīng)用意識(shí)。
(四)反饋練習(xí)
課本P65練習(xí)。1、2、3
補(bǔ)充:如圖,在△ABC和△ABD中。因?yàn)?,AB=AC,所以,∠C=∠D。對(duì)嗎?
〔設(shè)計(jì)意圖〕讓學(xué)生注意“等邊對(duì)等角”,是在同一個(gè)三角形內(nèi)用的。
(五)歸納小結(jié)
由師:今天這節(jié)課即將結(jié)束,你能告訴老師你的收獲嗎?
學(xué)生相互歸納和補(bǔ)充(幻燈片顯示):
1、等腰三角形的兩條性質(zhì):“等邊對(duì)等角”,“三線合一”。
2、已知等腰三角形一個(gè)角(或一條邊)時(shí),要注意分類討論,判斷是頂角還是底角(是腰還是底邊)。
3、注意:等邊對(duì)等角是指在一個(gè)三角形內(nèi)用的。
4、等邊三角形的性質(zhì)。
八年級(jí)等腰三角形數(shù)學(xué)教案 3
一、教材的地位和作用
現(xiàn)實(shí)生活中,等腰三角形的應(yīng)用比比皆是、所以,利用“軸對(duì)稱”的知識(shí),進(jìn)一步研究等腰三角形的特殊性質(zhì),不僅是現(xiàn)實(shí)生活的需要,而且從思想方法和知識(shí)儲(chǔ)備上,為今后研究“四邊形”和“圓”的性質(zhì)打下堅(jiān)實(shí)的基礎(chǔ)、
性質(zhì)“等腰三角形的兩個(gè)底角相等”是幾何論證過(guò)程中,證明“兩個(gè)角相等”的重要方法之一、“等腰三角形底邊上的三條重要線段重合”的性質(zhì)是今后證明“兩條線段相等” “兩條直線互相垂直”“兩個(gè)角相等”等結(jié)論的重要理論依據(jù)、
教學(xué)重點(diǎn):
1、讓學(xué)生主動(dòng)經(jīng)歷思考和探索的過(guò)程、
2、掌握等腰三角形性質(zhì)及其應(yīng)用、
教學(xué)難點(diǎn):等腰三角形性質(zhì)的理解和探究過(guò)程、
二、學(xué)情分析
本年級(jí)的學(xué)生已經(jīng)研究過(guò)一般三角形的性質(zhì),積累了一定的經(jīng)驗(yàn),動(dòng)手能力強(qiáng),善于與同伴交流,這就為本節(jié)課的學(xué)習(xí)做好了知識(shí)、能力、情感方面的準(zhǔn)備、不同層次的學(xué)生因?yàn)榛A(chǔ)不同,在學(xué)習(xí)中必然會(huì)出現(xiàn)相異構(gòu)想,這也將是我在教學(xué)過(guò)程中著重關(guān)注的一點(diǎn)、
三、目標(biāo)分析
知識(shí)與技能
1、了解等腰三角形的有關(guān)概念和掌握等腰三角形的性質(zhì)
2、了解等邊三角形的概念并探索其性質(zhì)
3、運(yùn)用等腰三角形的性質(zhì)解決問(wèn)題
過(guò)程與方法
1、通過(guò)觀察等腰三角形的對(duì)稱性,發(fā)展學(xué)生的形象思維、
2、探索等腰三角形的性質(zhì)時(shí),經(jīng)歷了觀察、動(dòng)手實(shí)踐、猜想、驗(yàn)證等數(shù)學(xué)過(guò)程,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),發(fā)展了學(xué)生的歸納推理,類比遷移的能力、在與他人交流的過(guò)程中,能運(yùn)用數(shù)學(xué)語(yǔ)言合乎邏輯的進(jìn)行討論和質(zhì)疑,提高了數(shù)學(xué)語(yǔ)言表達(dá)能力、
情感態(tài)度價(jià)值觀:
1、通過(guò)情境創(chuàng)設(shè),使學(xué)生感受到等腰三角形就在自己的身邊,從而使學(xué)生認(rèn)識(shí)到學(xué)習(xí)等腰三角形的必要性、
2、通過(guò)等腰三角形的性質(zhì)的歸納,使學(xué)生認(rèn)識(shí)到科學(xué)結(jié)論的發(fā)現(xiàn),是一個(gè)不斷完善的過(guò)程,培養(yǎng)學(xué)生堅(jiān)強(qiáng)的意志品質(zhì)、
3、通過(guò)小組合作,發(fā)展學(xué)生互幫互助的精神,體驗(yàn)合作學(xué)習(xí)中的樂(lè)趣和成就感、
四、教法分析
根據(jù)學(xué)生已有的認(rèn)知,采取了激疑引趣——猜想探究——應(yīng)用體驗(yàn)——建構(gòu)延伸的教學(xué)模式,并利用多媒體輔助教學(xué)、
設(shè)計(jì)意圖
同學(xué)們,我們?cè)谄吣昙?jí)已研究了一般三角形的性質(zhì),今天我們一起來(lái)探究特殊的三角形:等腰三角形、
等腰三角形的定義
有兩條邊相等的三角形叫做等腰三角形、
等腰三角形中,相等的兩邊都叫做腰,另一邊叫做底邊,兩腰的夾角叫做頂角、腰和底邊的夾角叫做底角、
提出問(wèn)題:生活中有哪些現(xiàn)象讓你聯(lián)想到等腰三角形?
首先讓學(xué)生明確:本學(xué)段的幾何圖形都是按一般的到特殊的順序研究的
通過(guò)學(xué)生描述等腰三角形在生活中的應(yīng)用,讓學(xué)生感受到數(shù)學(xué)就在我們身邊,以及研究等腰三角形的必要性、
剪紙游戲
你能利用手中的這個(gè)矩形紙片剪出一個(gè)等腰三角形嗎?注意安全呦!
學(xué)情分析:
大部分學(xué)生會(huì)有自己的想法,根據(jù)軸對(duì)稱圖形的性質(zhì),利用對(duì)折紙片,再“剪一刀”就是就得到了兩條“腰”;
可能還有的同學(xué)會(huì)利用正方形的折法,獲得特殊的等腰直角三角形;
可能還有同學(xué)先畫圖,再依線條剪得、
在這個(gè)過(guò)程中,注重落實(shí)三維目標(biāo)、讓學(xué)生在獲取新知的過(guò)程中更好的認(rèn)識(shí)自我,建立自信、我不失時(shí)機(jī)的對(duì)學(xué)生給予鼓勵(lì)和表?yè)P(yáng),使活動(dòng)更加深入,課堂充滿愉悅和溫馨、
知其然,更重要的是知其所以然、因此,我力求讓學(xué)生關(guān)注剪法的理性思考、
我設(shè)計(jì)了問(wèn)題:你是如何想到的?為的是剖析學(xué)生的思維過(guò)程:“折疊”就是為了得到“對(duì)稱軸”,“剪一刀”就是就得到了兩條“腰”,由“重合”保證了“等腰”、這樣就建立了“操作”與“證明”的中間橋梁、從實(shí)際操作中得到證明的方法,也為發(fā)現(xiàn)“三線合一”做了鋪墊、
提出問(wèn)題:
等腰三角形還有什么性質(zhì)?請(qǐng)?zhí)岢瞿愕牟孪耄?yàn)證你的猜想?并填寫在學(xué)案上、
合作小組活動(dòng)規(guī)則:
1、有主記錄員記錄小組的結(jié)論;
2、定出小組的主發(fā)言人(其它同學(xué)可作補(bǔ)充);
3、小組探究出的結(jié)論是什么?
4、說(shuō)明你們小組所獲得結(jié)論的理由、
等腰三角形的性質(zhì):
性質(zhì)一:等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱“等邊對(duì)等角”)、
性質(zhì)二:等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(簡(jiǎn)稱“三線合一”)、
學(xué)情分析:這個(gè)環(huán)節(jié)是本節(jié)課的重點(diǎn),也是教學(xué)難點(diǎn)、盡管在教學(xué)過(guò)程中,因?yàn)閷W(xué)生的相異構(gòu)想,數(shù)學(xué)猜想的初始敘述不準(zhǔn)確,甚至不正確,但我不會(huì)立即去糾正他們,而是讓同學(xué)們不斷地質(zhì)疑﹑辨析、研討和歸納,逐漸完善結(jié)論、讓他們真正經(jīng)歷數(shù)學(xué)知識(shí)的形成過(guò)程,真正的體現(xiàn)以人為本的教學(xué)理念,努力創(chuàng)設(shè)和諧的教育教學(xué)的生態(tài)環(huán)境、
通過(guò)設(shè)置恰當(dāng)?shù)膭?dòng)手實(shí)踐活動(dòng),引導(dǎo)學(xué)生經(jīng)歷觀察、動(dòng)手實(shí)踐、猜想、驗(yàn)證等數(shù)學(xué)探究活動(dòng),這種探究的學(xué)習(xí)過(guò)程,恰恰是研究幾何圖形性質(zhì)的一般規(guī)律和方法、
(1)在此環(huán)節(jié)中,我的教學(xué)要充分把握好“四讓”:能讓學(xué)生觀察的,盡量讓學(xué)生觀察;能讓學(xué)生思考的,盡量讓學(xué)生思考;能讓學(xué)生表達(dá)的,盡量讓學(xué)生表達(dá);能讓學(xué)生作結(jié)論的,盡量讓學(xué)生作結(jié)論、
這種教學(xué)方式,把學(xué)習(xí)的過(guò)程真正還給學(xué)生,不怕學(xué)生說(shuō)不好,不怕學(xué)生出問(wèn)題,其實(shí)學(xué)生說(shuō)不好的地方、學(xué)生出問(wèn)題的地方都正是我們應(yīng)該教的地方,是教學(xué)的切入點(diǎn)、著眼點(diǎn)、增長(zhǎng)點(diǎn)、
(2)教師在這個(gè)過(guò)程中,充分聽(tīng)取和參與學(xué)生的小組討論,對(duì)有困難的學(xué)生,及時(shí)指導(dǎo)、
鞏固知識(shí)
1、等腰三角形頂角為70°,它的另外兩個(gè)內(nèi)角的度數(shù)分別為_(kāi)_______;
2、等腰三角形一個(gè)角為70°,它的另外兩個(gè)內(nèi)角的度數(shù)分別為_(kāi)____;
3、等腰三角形一個(gè)角為100°,它的另外兩個(gè)內(nèi)角的度數(shù)分別為_(kāi)____、
內(nèi)化知識(shí)
1、如圖1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度數(shù)嗎?
知識(shí)遷移
等邊三角形有什么特殊的性質(zhì)?簡(jiǎn)單地?cái)⑹隼碛伞?/p>
等邊三角形的性質(zhì)定理:
等邊三角形的各角都相等,并且每一個(gè)角都等于60°、
拓展延伸
如圖2,在△ABC中,AB=AC,點(diǎn)D,E在BC上,AD=AE,你能說(shuō)明BD=EC?
由于學(xué)生之間存在知識(shí)基礎(chǔ)、經(jīng)驗(yàn)和能力的差異,我為學(xué)生提供了層次分明的反饋練習(xí)、將練習(xí)從易到難,從簡(jiǎn)到繁,以適應(yīng)不同階段、不同層次的學(xué)生的需要、讓學(xué)生拾階而上,逐步掌握知識(shí),使學(xué)困生達(dá)到簡(jiǎn)單運(yùn)用水平,中等生達(dá)到綜合運(yùn)用水平,優(yōu)等生達(dá)到創(chuàng)建水平、
暢談收獲
總結(jié)活動(dòng)情況,重在肯定與鼓勵(lì)、引導(dǎo)學(xué)生從本課學(xué)習(xí)中所得到的新知識(shí),運(yùn)用的數(shù)學(xué)思想方法,新舊知識(shí)的聯(lián)系等方面進(jìn)行反思,提高學(xué)生自主建構(gòu)知識(shí)網(wǎng)絡(luò)、分析解決問(wèn)題的能力、
幫助學(xué)生梳理知識(shí),回顧探究過(guò)程中所用到的從特殊到一般的數(shù)學(xué)方法,啟發(fā)學(xué)生更深層次的`思考,為學(xué)生的下一步學(xué)習(xí)做好鋪墊、
反思過(guò)程不僅是學(xué)生學(xué)習(xí)過(guò)程的繼續(xù),更重要的是一種提高和發(fā)展自己的過(guò)程、
基礎(chǔ)性作業(yè):P65習(xí)題1、2、3、4
等腰三角形教案 4
一、教材分析
教材是教師教學(xué)的基本依據(jù),因此,教師必須把握教材,了解教材的內(nèi)容體系與脈絡(luò)。
首先, 我們來(lái)分析教材的地位與作用: 等腰三角形是在學(xué)習(xí)了全等三角形的判定及性質(zhì)與軸對(duì)稱之后編排的,它不僅是對(duì)前面所學(xué)知識(shí)的延伸應(yīng)用,同時(shí)也是今后探究線段相等、角相等以及兩直線垂直等的重要依據(jù),它所應(yīng)用的觀察-發(fā)現(xiàn)-猜想-論證的數(shù)學(xué)思想方法是今后研究數(shù)學(xué)的基本思想方法。因此,本節(jié)內(nèi)容在教材中處于非常重要的地位,起著承前啟后的作用。
基于以上分析,根據(jù)新課標(biāo)的要求,結(jié)合學(xué)生的具體實(shí)際,我制定了如下教學(xué)目標(biāo):
知識(shí)技能:掌握等腰三角形的性質(zhì),運(yùn)用等腰三角形的性質(zhì)進(jìn)行證明和計(jì)算。
數(shù)學(xué)思考: 使學(xué)生經(jīng)歷知識(shí)的形成和發(fā)展過(guò)程,發(fā)展合情推理和演繹推理能力,培養(yǎng)主動(dòng)探究的習(xí)慣。
問(wèn)題解決: 通過(guò)學(xué)生體驗(yàn)發(fā)現(xiàn)問(wèn)題,提出問(wèn)題及解決問(wèn)題的全過(guò)程,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用能力。
情感態(tài)度: 通過(guò)學(xué)生參與數(shù)學(xué)活動(dòng),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲,體驗(yàn)獲得成功的樂(lè)趣,鍛煉克服困難的意志,建立學(xué)好數(shù)學(xué)的自信心。
本節(jié)課的重點(diǎn)為等腰三角形的性質(zhì)及其應(yīng)用,我將通過(guò)創(chuàng)設(shè)情境和解決問(wèn)題來(lái)突出重點(diǎn)。由于現(xiàn)階段學(xué)生把文字命題翻譯成數(shù)學(xué)符號(hào)語(yǔ)言的能力有待提高,所以本節(jié)課的難點(diǎn)在于等腰三角形性質(zhì)的證明,我將通過(guò)折紙實(shí)驗(yàn)和小組合作探究來(lái)突破難點(diǎn)。
二、學(xué)情分析:
學(xué)生是教學(xué)工作的落腳點(diǎn),是備課活動(dòng)的最終服務(wù)對(duì)象?,F(xiàn)階段學(xué)生已了解全等三角形和軸對(duì)稱圖形的相關(guān)知識(shí),這個(gè)階段學(xué)生的思維以形象思維為主,他們好奇愛(ài)問(wèn)、求知欲強(qiáng)、想像力豐富,會(huì)進(jìn)行簡(jiǎn)單的說(shuō)理,但他們對(duì)如何從實(shí)際問(wèn)題中抽象出數(shù)學(xué)問(wèn)題,建立數(shù)學(xué)模型的能力較差。
三、教法學(xué)法分析:
教需有法,教無(wú)定法;大法必依,小法必活。
根據(jù)學(xué)生的具體情況和本節(jié)課的特點(diǎn),我將采用“探索、歸納與合作交流”相結(jié)合的方法,以學(xué)生主動(dòng)參與為前提、自主學(xué)習(xí)為途徑、合作交流為形式,培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、合作、交流,為學(xué)生的終身學(xué)習(xí)奠定基礎(chǔ)。
對(duì)于本節(jié)課的教學(xué),我從興趣著手,讓學(xué)生在自主探究中經(jīng)歷知識(shí)的形成、發(fā)展過(guò)程,并使其思維能力在小組合作交流中得到鍛煉。
為了達(dá)到更好的教學(xué)效果,本節(jié)課我將采用師生互動(dòng)、生生互動(dòng)的教學(xué)組織形式。
四、教學(xué)過(guò)程設(shè)計(jì)
也就是說(shuō)課的重頭戲,我的教學(xué)過(guò)程將圍繞以下四個(gè)環(huán)節(jié)展開(kāi):創(chuàng)設(shè)情境、導(dǎo)入新課;合作交流、探究新知;體驗(yàn)新知,學(xué)以致用;小結(jié)升華、布置作業(yè)。首先進(jìn)入第一個(gè)環(huán)節(jié):創(chuàng)設(shè)情境,導(dǎo)入新課:
具體生動(dòng)的情境具有很強(qiáng)的感染力和說(shuō)服力,可以觸及到學(xué)生的內(nèi)心深處,使其思想與本節(jié)課的內(nèi)容—等腰三角形發(fā)生聯(lián)結(jié)。所以,上課伊始,在美妙的音樂(lè)中,我會(huì)用課件展示生活中含有等腰三角形模型的一些圖片。
之后聯(lián)系已學(xué)的等腰三角形的定義,我會(huì)向?qū)W生介紹 腰 底邊 頂角 底角 等相關(guān)概念,并給學(xué)生設(shè)疑:等腰三角形作為一種特殊的三角形,有沒(méi)有自己特殊的性質(zhì)呢?從而引出本節(jié)課的內(nèi)容。(板書)
荷蘭數(shù)學(xué)家弗賴登塔爾曾說(shuō)過(guò): “學(xué)習(xí)數(shù)學(xué)唯一正確的方法是實(shí)現(xiàn)再創(chuàng)造,也就是由學(xué)生本人把要學(xué)的東西自己去發(fā)現(xiàn)或創(chuàng)造出來(lái),教師的任務(wù)則是引導(dǎo)和幫助學(xué)生去進(jìn)行這種再創(chuàng)造的工作,而不是把現(xiàn)成的知識(shí)灌輸給學(xué)生?!?/p>
為此,我設(shè)置了合作交流、探究新知這一環(huán)節(jié)并通過(guò)以下四個(gè)活動(dòng)展開(kāi):剪等腰三角形 實(shí)驗(yàn)探究—等腰三角形性質(zhì) 概括總結(jié)—等腰三角形性質(zhì) 推理證明—等腰三角形性質(zhì)
首先我將帶領(lǐng)學(xué)生進(jìn)入活動(dòng)1: 剪等腰三角形
為了提高學(xué)生的動(dòng)手能力,使學(xué)生從本質(zhì)上認(rèn)識(shí)等腰三角形,我讓學(xué)生拿出事先準(zhǔn)備好的長(zhǎng)方形紙片,分組活動(dòng),剪等腰三角形。
剪完以后,我會(huì)請(qǐng)各小組推薦一名代表上臺(tái)展示所剪三角形,并講解自己的剪法,學(xué)生的想像力是相當(dāng)豐富的,剪的方法多種多樣,在這里我僅展示了以下四種剪法:
(1) (2) (3) (4)
如圖(1)的操作,剪出的是等腰直角三角形 ,圖(2)中,學(xué)生先畫出了一個(gè)等
腰三角形,再把它剪下來(lái),圖(3)為教材中的剪法,得到了這樣一個(gè)等腰三角形,按圖(4)的操作可以得到兩個(gè)三角形,將它們拼在一起則為等腰三角形。為方便下一步使用,對(duì)于采用第(4)種剪法的學(xué)生,我會(huì)建議他們用第(3)種剪法再剪一次。
對(duì)于活動(dòng)1的處理,我跟教材上是不同的。大家都知道,教材知識(shí)具有系統(tǒng)性,一般編寫得比較簡(jiǎn)練。教師不是教教材,而是用教材創(chuàng)造性地去教。我之所以這樣設(shè)計(jì),一是培養(yǎng)學(xué)生的發(fā)散思維,二是讓學(xué)生明白剪腰三角形有很多方法,辨析最簡(jiǎn)單的方法。
接下來(lái)進(jìn)入活動(dòng)2: 實(shí)驗(yàn)探究—等腰三角形的性質(zhì)
讓學(xué)生將剛才所剪的等腰三角形標(biāo)上字母后,對(duì)折成兩個(gè)全等的三角形,分小組觀察并完成事先準(zhǔn)備好的實(shí)驗(yàn)單,在實(shí)驗(yàn)單上,我設(shè)置了2個(gè)問(wèn)題:
((1)等腰三角形ABC是軸對(duì)稱圖形嗎?
(2)對(duì)折后的△ABC重合的部分是什么?
之后,各小組推薦一名代表上臺(tái),在投影儀下展示他們的探究結(jié)果。根據(jù)學(xué)生所填實(shí)驗(yàn)單,我會(huì)引導(dǎo)學(xué)生將符號(hào)語(yǔ)言轉(zhuǎn)化為自然語(yǔ)言, △ABC兩底角相等是顯而易見(jiàn)的,我會(huì)引導(dǎo)學(xué)生發(fā)現(xiàn):折痕AD在△ABC中具有三重身份。
通過(guò)前2個(gè)活動(dòng)的鋪墊,在活動(dòng)3,讓學(xué)生概括總結(jié)出等腰三角形的性質(zhì):(1)等腰三角形的兩個(gè)底角相等; (2)等腰三角形的頂角平分線、底邊上中線、底邊上的高相互重合。
通過(guò)前3個(gè)活動(dòng),讓學(xué)生經(jīng)歷了發(fā)現(xiàn)問(wèn)題、提出問(wèn)題、解決問(wèn)題的全過(guò)程,教會(huì)了他們?cè)鯓舆M(jìn)行數(shù)學(xué)思考。
數(shù)學(xué)知識(shí)具有高度的嚴(yán)謹(jǐn)性,我們得到的實(shí)驗(yàn)結(jié)果需要理論上加以推證,因此,我設(shè)計(jì)了活動(dòng)4: 推理證明—等腰三角形性質(zhì)
性質(zhì)1的證明對(duì)于現(xiàn)階段學(xué)生有2個(gè)難點(diǎn):一是將文字性命題轉(zhuǎn)化為符號(hào)語(yǔ)言,二是怎樣添加輔助線,在這個(gè)環(huán)節(jié)為突破第1個(gè)難點(diǎn),我會(huì)先就性質(zhì)1 “等腰三角形的兩個(gè)底角相等”的條件和結(jié)論對(duì)學(xué)生進(jìn)行提問(wèn),引導(dǎo)學(xué)生完成轉(zhuǎn)化。
為了突破第二個(gè)難點(diǎn),我會(huì)提示學(xué)生,由前面試驗(yàn)中的折痕我們?nèi)菀紫氲竭^(guò)A點(diǎn)添加輔助線,由于△ABC得折痕具有三重身份,所以性質(zhì)1的證明方法不止一種,讓他們體會(huì)條條道路通羅馬的道理。安排學(xué)生分組討論并發(fā)言之后,我會(huì)用板書示范一種證明過(guò)程,另外兩種方法證明過(guò)程由學(xué)生類比完成。
教師多1分精心的預(yù)設(shè),課堂就多1份動(dòng)態(tài)的生成,學(xué)生就會(huì)多一1份發(fā)展。所以,在學(xué)生體驗(yàn)成功的喜悅之時(shí),我會(huì)乘勝追擊,反問(wèn)學(xué)生:前面3種證明方法都借助了輔助線,不作輔助線你能證明性質(zhì)1嗎?一石激起千層浪,再次激起了學(xué)生的求知欲。
我預(yù)測(cè),學(xué)生很難想到不作輔助線如何完成性質(zhì)1的證明,其實(shí),只要將△ABC看作兩個(gè)三角形 ABC和ACB,并證明它們?nèi)燃纯?。這種證法培養(yǎng)了學(xué)生的發(fā)散思維,啟發(fā)學(xué)生要敢于打破陳規(guī),張開(kāi)想像的。翅膀。在此,我之所以這樣設(shè)計(jì),是想以教師教學(xué)方式的轉(zhuǎn)變促進(jìn)學(xué)生學(xué)習(xí)方式的轉(zhuǎn)變,使學(xué)生走出思維定勢(shì),給學(xué)生一個(gè)活性的大腦。
性質(zhì)1證明完畢,我會(huì)提出問(wèn)題:受性質(zhì)1的證明的啟發(fā),你能證明性質(zhì)2(等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合)嗎?我會(huì)引導(dǎo)學(xué)生把性質(zhì)2分解為3個(gè)命題,讓學(xué)生分組討論證明。
通過(guò)實(shí)驗(yàn)探究,邏輯推理,得到了性質(zhì)1和性質(zhì)2,性質(zhì)1,我們又簡(jiǎn)稱 等邊對(duì)等角,性質(zhì)2,又簡(jiǎn)稱 三線合一。至此,探究新知環(huán)節(jié)已經(jīng)完成。
學(xué)生對(duì)知識(shí)的掌握是通過(guò)“學(xué)得”和“習(xí)得”而來(lái)的,為了鞏固本節(jié)課所學(xué)知識(shí),我設(shè)置了體驗(yàn)新知,學(xué)以致用環(huán)節(jié), 本環(huán)節(jié)按照循序漸進(jìn)原則設(shè)置了2個(gè)練習(xí)題和1個(gè)思考題,它們由淺入深,由易到難,各有側(cè)重。練習(xí)1作為性質(zhì)1的有效補(bǔ)充,提示學(xué)生等邊對(duì)等角這一性質(zhì)必須在同一個(gè)等腰三角形中才可使用,強(qiáng)調(diào)審題的重要性;
練習(xí)2直接來(lái)自課本,它的設(shè)置,是為了鞏固和應(yīng)用 “等邊對(duì)等角”,培養(yǎng)學(xué)生的轉(zhuǎn)化思想和方程思想。
之后,我又給了一道思考題,讓學(xué)生利用剛學(xué)到的知識(shí),做一個(gè)用來(lái)測(cè)量屋頂?shù)臋M梁是否水平的工具?將枯燥的數(shù)學(xué)問(wèn)題賦予于有趣的實(shí)際背景,同時(shí)激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣讓學(xué)生充分感受本節(jié)課內(nèi)容在解決實(shí)際問(wèn)題中的作用。
為了拓寬學(xué)生的知識(shí)面,我上網(wǎng)查閱了資料,有關(guān)等腰三角形的面積說(shuō),以等腰三角形的底邊代表人的遺傳因素,兩腰分別代表飲食營(yíng)養(yǎng)和身心健康,那么等腰三角形的面積越大,人的壽命就越長(zhǎng),怎樣擴(kuò)大等腰三角形的面積從而延長(zhǎng)壽命呢?我會(huì)讓有興趣的同學(xué)在課下上網(wǎng)查閱。
葉瀾教授說(shuō):一個(gè)教師寫一輩子教案不一定成為名師,如果一個(gè)教師寫三年的反思,有可能成為名師。因此,反思是進(jìn)步的階梯。
本環(huán)節(jié)中,我會(huì)先帶領(lǐng)學(xué)生對(duì)本節(jié)課內(nèi)容作出小結(jié),之后讓學(xué)生暢所欲言,對(duì)自己說(shuō):我有什么收獲,對(duì)老師說(shuō):我有什么疑惑,對(duì)同學(xué)說(shuō):我有什么溫馨提示。同時(shí)給學(xué)生提供一個(gè)充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),體現(xiàn)了學(xué)生是學(xué)習(xí)的主人的理念。
作業(yè)設(shè)計(jì)是教師了解、掌握學(xué)生學(xué)習(xí)情況的一把尺子。這個(gè)環(huán)節(jié)遵循因材施教的原則,必作題體現(xiàn)新課標(biāo)下落實(shí)“人人都能獲得良好的數(shù)學(xué)教育”,選做題則讓“不同的人在數(shù)學(xué)上得到不同的發(fā)展”, 體現(xiàn)分層思想。讓學(xué)生不僅學(xué)會(huì),而且會(huì)學(xué),最終達(dá)到樂(lè)學(xué)的目的。
五。板書設(shè)計(jì)
板書是課堂教學(xué)的縮影,是把握教學(xué)重點(diǎn)的示意圖,也是提示教學(xué)難點(diǎn)的輻射源。由于借助了多媒體輔助教學(xué),我的板書將分為2個(gè)區(qū)域,第一個(gè)區(qū)域,是等腰三角形的性質(zhì),突出了重點(diǎn),第二個(gè)區(qū)域是性質(zhì)1的示范證明,突破了難點(diǎn)
等腰三角形的性質(zhì) 5
今天我說(shuō)課的內(nèi)容是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書《數(shù)學(xué)》八年級(jí)上冊(cè)第十二章12、3、1等腰三角形性質(zhì)第一課時(shí)。下面,我從教材分析、教法分析、學(xué)法分析、教學(xué)過(guò)程、教學(xué)反思五個(gè)方面來(lái)匯報(bào)我對(duì)這節(jié)課的教學(xué)設(shè)想。
一、教材分析
1、教材的地位與作用:
本節(jié)課內(nèi)容是在學(xué)生掌握了一般三角形和軸對(duì)稱的知識(shí),具有初步的推理證明能力的基礎(chǔ)上進(jìn)行學(xué)習(xí)的。使學(xué)生學(xué)會(huì)分析、學(xué)會(huì)證明,在培養(yǎng)學(xué)生的思維能力和推理能力等方面有重要的作用。通過(guò)等腰三角形的性質(zhì)反映在一個(gè)三角形中“等邊對(duì)等角”的邊角關(guān)系,并且是對(duì)軸對(duì)稱圖形性質(zhì)的直觀反映(三線合一)。它所倡導(dǎo)的“觀察———發(fā)現(xiàn)———猜想———論證”的數(shù)學(xué)思想方法是今后研究數(shù)學(xué)的基本思想方法。等腰三角形的性質(zhì)也是論證兩個(gè)角相等、兩條線段相等、兩條直線垂直的重要依據(jù),因此,本節(jié)內(nèi)容在教材中處于非常重要的地位,起著承前啟后的作用。
2、教學(xué)目標(biāo):
知識(shí)技能:理解掌握等腰三角形的性質(zhì);運(yùn)用等腰三角形的性質(zhì)進(jìn)行證明和計(jì)算。
過(guò)程方法:通過(guò)實(shí)踐、觀察、證明等腰三角形的性質(zhì),發(fā)展學(xué)生合情推理能力和演繹推理能力。
解決問(wèn)題:通過(guò)觀察等腰三角形的對(duì)稱性,及運(yùn)用等腰三角形的性質(zhì)解決有關(guān)的問(wèn)題,提高學(xué)生觀察、分析、歸納、運(yùn)用知識(shí)解決問(wèn)題的能力,發(fā)展應(yīng)用意識(shí)。
情感態(tài)度:通過(guò)引導(dǎo)學(xué)生對(duì)圖形的觀察、發(fā)現(xiàn),激發(fā)學(xué)生的好奇心和求知欲,并在運(yùn)用數(shù)學(xué)知識(shí)解答問(wèn)題的活動(dòng)中獲取成功的體驗(yàn),建立學(xué)習(xí)的自信心。
(根據(jù)教材內(nèi)容的地位與作用及教學(xué)目標(biāo),因此我將把本節(jié)課的重點(diǎn)確定為:等腰三角形的性質(zhì)的探究和應(yīng)用。由于對(duì)文字語(yǔ)言敘述的幾何命題的證明要求嚴(yán)格且步驟繁瑣,此時(shí)八年級(jí)學(xué)生還沒(méi)有深刻的理解和熟練的掌握,因此我將把本節(jié)課的難點(diǎn)定為:等腰三角形性質(zhì)的推理證明。)
3、教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn):等腰三角形的性質(zhì)的探索和應(yīng)用。
難點(diǎn):等腰三角形性質(zhì)的推理證明。
二、教法設(shè)計(jì):
教法設(shè)想:我采用探索發(fā)現(xiàn)法和啟發(fā)式教學(xué)法完成本節(jié)的教學(xué),在教學(xué)中通過(guò)創(chuàng)設(shè)情景,設(shè)計(jì)問(wèn)題,引導(dǎo)學(xué)生自主探索,合作交流,組織學(xué)生動(dòng)手操作,觀察現(xiàn)象,提出猜想,推理論證等。有效地啟發(fā)學(xué)生的思考,使學(xué)生真正成為學(xué)習(xí)的主體。
三、學(xué)法設(shè)計(jì):
在學(xué)生學(xué)習(xí)的過(guò)程中,我將從兩個(gè)方面指導(dǎo)學(xué)生學(xué)習(xí)等腰三角形:一方面老師大膽放手,讓學(xué)生去自主探究等腰三角形的性質(zhì),另一方面,在對(duì)等腰三角形性質(zhì)的證明過(guò)程中,老師要巧妙引導(dǎo),分散難點(diǎn)。這樣做既有利于活躍學(xué)生的思維,又能幫助他們探本求源,這樣也體現(xiàn)了以“教師為主導(dǎo),學(xué)生為主體”的新課改背景下的教學(xué)原則。
四、教學(xué)過(guò)程:
根據(jù)制定的教學(xué)目標(biāo),圍繞重點(diǎn),突破難點(diǎn),我將從以下七個(gè)方面設(shè)計(jì)我的教學(xué)過(guò)程:
1、創(chuàng)設(shè)情景:
首先向同學(xué)們出示精美的建筑物圖片,并提出問(wèn)題串:
(1)什么是軸對(duì)稱圖形?這些圖片中有軸對(duì)稱圖形嗎?
(2)里面有等腰三角形嗎?然后向?qū)W生介紹等腰三角形的定義以及邊角等相關(guān)的概念,由于學(xué)生小學(xué)就已經(jīng)接觸過(guò),所以學(xué)生很容易理解。再提出第三個(gè)問(wèn)題:
(3)a、等腰三角形是軸對(duì)稱圖形嗎?b、等腰三角形具備哪些性質(zhì)呢?引出本節(jié)課的課題—我們這節(jié)課來(lái)探究等腰三角形的性質(zhì)?!鍟n題。
2、動(dòng)手操作,大膽猜想:
①拿出課下制作的等腰三角形的紙片,它是軸對(duì)稱圖形嗎?對(duì)稱軸是誰(shuí)?用你手中的紙片說(shuō)明你的看法?②等腰三角形沿對(duì)稱軸折疊后,你能得到哪些結(jié)論?(看誰(shuí)得到的結(jié)論多)
③分組討論。(看哪一組氣氛最活躍,結(jié)論又對(duì)又多、)
然后小組代表發(fā)言,交流討論結(jié)果。
④歸納:你能猜想得到等腰三角形具有什么性質(zhì)?你能用文字語(yǔ)言歸納一下嗎?
(教師引導(dǎo)學(xué)生進(jìn)行總結(jié)歸納得出性質(zhì)1,2)
性質(zhì)1:等腰三角形的兩底角相等。(簡(jiǎn)寫成“等邊對(duì)等角”)
性質(zhì)2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。(簡(jiǎn)稱“三線合一”)
(設(shè)計(jì)意圖:由學(xué)生自己動(dòng)手折紙活動(dòng),根據(jù)等腰三角形軸對(duì)稱性,大膽猜測(cè)等腰三角形的性質(zhì),培養(yǎng)學(xué)生的觀察分析、概括總結(jié)能力。也發(fā)展了學(xué)生的幾何直觀。教師在學(xué)生猜想的基礎(chǔ)上,引導(dǎo)學(xué)生觀察、完善、歸納出性質(zhì)1和性質(zhì)2。培養(yǎng)了學(xué)生進(jìn)行合情推理的能力。)
3、證明猜想,形成定理:
你能證明等腰三角形的性質(zhì)嗎?
對(duì)于這種幾何命題的證明需要三大步驟:分析題設(shè)結(jié)論,畫出圖形寫出已知和求證,最后進(jìn)行推理證明。這對(duì)于八年級(jí)學(xué)段的學(xué)生難度較大,為了突破難點(diǎn),我決定設(shè)計(jì)以下三個(gè)階梯問(wèn)題:
(1)找出“性質(zhì)1”的題設(shè)和結(jié)論,畫出的圖形,寫出已知和求證。
(2)證明角和角相等有哪些方法?(學(xué)生可能會(huì)想到平行線的性質(zhì),全等三角形的性質(zhì))
(3)通過(guò)折疊等腰三角形紙片,?
問(wèn)題1的設(shè)計(jì)使得學(xué)生順利地將文字語(yǔ)言轉(zhuǎn)化為符號(hào)語(yǔ)言,幫助學(xué)生順利地寫出已知和求證;
問(wèn)題2提供給學(xué)生了解題思路,引導(dǎo)學(xué)生用舊的知識(shí)解決新的問(wèn)題,體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想。找到新知識(shí)的生長(zhǎng)點(diǎn),就是三角形的全等。
問(wèn)題3的設(shè)計(jì)目的:因?yàn)檩o助線的添加是本題中的又一難點(diǎn),因此讓學(xué)生對(duì)折等腰三角形紙片,使兩腰重合,使學(xué)生在形成感性認(rèn)識(shí)的同時(shí),意識(shí)到要證明∠B=∠C,關(guān)鍵是將∠B和∠C放在兩三角形中去,構(gòu)造全等三角形,老師再及時(shí)設(shè)問(wèn):? 以作頂角平分線為例,讓一生板演,其他學(xué)生在練習(xí)本上寫出完整的證明過(guò)程。以達(dá)到規(guī)范學(xué)生的解題步驟的目的。其他兩種證法,讓學(xué)生課下證明。這樣,學(xué)生就證明了性質(zhì)1,同時(shí)由于△BAD≌△CAD,也很容易得出等腰三角形的頂角平分線平分底邊,并垂直于底邊。用類似的方法還可以證明等腰三角形底邊的中線平分頂角且垂直于底邊,等腰三角形底邊上的高平分頂角且平分底邊,這也就證明了性質(zhì)2。
(設(shè)計(jì)意圖:教師精心設(shè)計(jì)問(wèn)題串引導(dǎo)學(xué)生通過(guò)動(dòng)手,觀察,猜想,歸納,猜測(cè)出等腰三角形的性質(zhì),發(fā)展了學(xué)生的合情推理能力,同時(shí)也讓學(xué)生明確,結(jié)論的正確性需要通過(guò)演繹推理加以證明。這樣把對(duì)性質(zhì)的證明作為探索活動(dòng)的自然延續(xù)和必要發(fā)展,使學(xué)生感受到合情推理與演繹推理是相輔相成的兩種形式,同時(shí)感受到探索證明同一個(gè)問(wèn)題的不同思路和方法,發(fā)展了學(xué)生思維的廣闊性和靈活性。)
(4)你能用符號(hào)語(yǔ)言表示性質(zhì)1和性質(zhì)2嗎?
(設(shè)計(jì)意圖:把文字語(yǔ)言轉(zhuǎn)換為符號(hào)語(yǔ)言,讓學(xué)生建立符號(hào)意識(shí),這有助于學(xué)生理解符號(hào)的使用是數(shù)學(xué)表達(dá)和進(jìn)行數(shù)學(xué)思考的重要形式?!?/p>
4、性質(zhì)的應(yīng)用:
例一:在等腰△ABC中,AB=AC,∠A=50°,則∠B=_____,∠C=______
變式練習(xí)題:
1、在等腰中,∠A=50°,則∠B=___,∠C=___
2、在等腰中,∠A=100°,則∠B=___,∠C=___
設(shè)計(jì)意圖:此例題的重點(diǎn)是運(yùn)用等腰三角形“等邊對(duì)等角”這一性質(zhì)和三角形的內(nèi)角和,突出頂角和底角的關(guān)系,如
例一,學(xué)生就比較容易得出正確結(jié)果,對(duì)變式練習(xí)題(1)、(2)學(xué)生得出正確的結(jié)果就有困難,容易漏解,讓學(xué)生把變式題與例一進(jìn)行比較兩題的條件,讓學(xué)生認(rèn)識(shí)等腰三角形在沒(méi)有明確頂角和底角時(shí),應(yīng)分類討論:變式1(如圖)①當(dāng)∠A=50°為頂角時(shí),則∠B=65°,∠C=65°。②當(dāng)∠A=50°為底角時(shí),則∠B=50°,∠C=80°;或∠B=80°,∠C=50°。變式2①當(dāng)∠A=100°為頂角時(shí),則∠B=40°,∠C=40°。②當(dāng)∠A=100°為底角時(shí),則△ABC不存在。由此得出,等腰三角形中已知一個(gè)角可以求出另兩個(gè)角(頂角和底角的取值范圍:0°<頂角<180°,0°<底角<90°)。
例二:在等腰△ABC中,AB=5,AC=6,則△ABC的周長(zhǎng)=_______
變式練習(xí)題:在等腰△ABC中,AB=5,AC=12,則△ABC的周長(zhǎng)=______
(設(shè)計(jì)意圖:此例題的重點(diǎn)是運(yùn)用等腰三角形的定義,以及等腰三角形腰和底邊的關(guān)系,并強(qiáng)調(diào)在沒(méi)有明確腰和底邊時(shí),應(yīng)該分兩種情況討論。如例二,①當(dāng)AB=5為腰時(shí),則三邊為5,5,6;②當(dāng)AB=5為底時(shí),則三邊為6,6,5。變式練習(xí)題①:當(dāng)AB=5為腰時(shí),三邊為5,5,12;②當(dāng)AB=5為底時(shí),三邊為12,12,5。此時(shí)同學(xué)們就會(huì)毫不猶豫地得出三角形的周長(zhǎng),這時(shí)老師就可以提出質(zhì)疑,讓同學(xué)們之間討論(學(xué)生容易忽視三角形三邊關(guān)系,看能否構(gòu)成一個(gè)三角形)。
例三、如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。
(例3是課本例題,有一定難度,讓學(xué)生展開(kāi)討論,老師參與討論,認(rèn)真聽(tīng)取學(xué)生分析,引導(dǎo)學(xué)生找出角之間的關(guān)系,利用方程的思想解決問(wèn)題,并書寫出解答過(guò)程。本題運(yùn)用了等腰三角形性質(zhì)1,并體現(xiàn)了利用方程解決幾何問(wèn)題的思想。)
例四:
在△ABC中,點(diǎn)D在BC上,給出4個(gè)條件:①AB=AC②∠BAD=∠DAC③AD⊥BC④BD=CD,以其中2個(gè)條件作題設(shè),另外2個(gè)條件作結(jié)論,你能寫出一個(gè)正確的命題嗎?看誰(shuí)寫得多。(分組討論搶答)
5、鞏固提高
(1)等腰三角形一腰上的高與另一腰的夾角為30°,則這個(gè)等腰三角形頂角為度。
(2)如圖,在△ABC中,AB=AC,D是BC邊上的中點(diǎn),∠B=30。求∠1和∠ADC的度數(shù)。
(3)課本本章數(shù)學(xué)活動(dòng)三“等腰三角形中相等的線段”
設(shè)計(jì)意圖:
(1)題運(yùn)用等腰三角形的性質(zhì)1及等腰三角形一腰上的高的畫法,由于題目沒(méi)有圖,要用到分類討論的數(shù)學(xué)思想,學(xué)生能正確畫出銳角和鈍角三角形兩種圖形就容易得出結(jié)果,也滲透了一題多解。
(2)題同時(shí)運(yùn)用了等腰三角形的性質(zhì)1,性質(zhì)2,還有三角形的內(nèi)角和這三個(gè)知識(shí)點(diǎn),培養(yǎng)學(xué)生對(duì)于知識(shí)的靈活運(yùn)用,“討論”是本章的數(shù)學(xué)活動(dòng)3“等腰三角形中相等的線段”。與等腰性質(zhì)的證明思路類似,先通過(guò)等腰三角形的對(duì)稱性猜想距離是相等的,然后通過(guò)做輔助線構(gòu)造全等三角形來(lái)進(jìn)行嚴(yán)密的推理。更加說(shuō)明了合情推理和演繹推理是相輔相成的。
6、課堂小結(jié):不僅僅說(shuō)你收獲了什么,而是讓學(xué)生從知識(shí)上,思想方法上,以及輔助線的做法上等方面具體總結(jié)一下。然后教師結(jié)合學(xué)生的回答完善本節(jié)知識(shí)結(jié)構(gòu)。學(xué)生對(duì)于自己的疑惑提出小組內(nèi)交流,還沒(méi)解決則全班交流。
7、布置作業(yè):
P55練習(xí)1、2、3題
P56習(xí)題1、4、6,(選做7,8題)
等腰三角形的性質(zhì) 6
教學(xué)目標(biāo)
1、掌握證明的基本步驟和書寫格式。
2、經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過(guò)程。能夠用綜合法證明直角三角形的有關(guān)性質(zhì)定理和等邊三角形的判定定理。
教學(xué)重點(diǎn)
等邊三角形的判定定理和直角三角形的性質(zhì)定理。
教學(xué)難點(diǎn)
能夠用綜合法證明等邊三角形的判定定理和直角三角形的性質(zhì)定理。
教學(xué)方法
教學(xué)后記
教學(xué)內(nèi)容及過(guò)程
教師活動(dòng)學(xué)生活動(dòng)
一、定理:一個(gè)角等于60°的等腰三角形是等邊三角形
1.引導(dǎo)學(xué)生回憶上節(jié)課的內(nèi)容,讓學(xué)生思考:等腰三角形滿足什么條件時(shí)
2.肯定學(xué)生的回答,并讓學(xué)生進(jìn)一步思考:有一個(gè)角是60°的等腰三家形是等邊三角形嗎?組織學(xué)生交流自己的想法。滲透分類討論的思維方法。
3.關(guān)注學(xué)生得出證明思路的過(guò)程,講評(píng)。講解定理:有一個(gè)角是60°的等腰三角形是等邊三角形。
二、一種特殊直角三角形的性質(zhì)
1.讓學(xué)生拼擺事先準(zhǔn)備好的三角尺,提問(wèn):能拼成一個(gè)怎樣的三角形?能否拼出一個(gè)等邊三角形?并說(shuō)明理由。
2.肯定學(xué)生的發(fā)現(xiàn)和解釋,在此基礎(chǔ)上進(jìn)一步深入提問(wèn):在直角三角形中,30°所對(duì)的直角邊與斜邊有怎樣的大小關(guān)系?
3.演示規(guī)范的證明步驟,同時(shí)引導(dǎo)學(xué)生意識(shí)到:通過(guò)實(shí)際操作探索出的結(jié)論還需要給予理論證明。
4.讓學(xué)生準(zhǔn)備一張正方形紙片,,按要求動(dòng)手折疊。
5.講解例題,應(yīng)用定理。
6.布置學(xué)生做練習(xí)。
練習(xí):課本隨堂練習(xí)1
三、課堂小結(jié):
通過(guò)這節(jié)課的學(xué)習(xí)你學(xué)到了什么知識(shí)?了解了什么證明方法?
四、作業(yè):同步練習(xí)
板書設(shè)計(jì):
1.積極地自主探索、思考等腰三角形成為等邊三角形的條件。可能會(huì)從邊和角兩個(gè)角度給出答案。
2.積極思考,通過(guò)老師的點(diǎn)撥,分類討論當(dāng)這個(gè)角分別是底角和頂角的情況。
3.認(rèn)真聽(tīng)講,體會(huì)分類討論的數(shù)學(xué)思維方法,理解定理。
1.積極動(dòng)手操作,并很快得到結(jié)果:可以拼出等邊三角形。
2.在拼擺的基礎(chǔ)上繼續(xù)探索,得出結(jié)論。并在探索的過(guò)程中得到證明的思路。
3.認(rèn)真聽(tīng)講,體會(huì)從探索和嘗試中得到結(jié)論的過(guò)程和證明方法的步驟,掌握定理。
4.很有興趣地折疊紙片,體會(huì)定理的應(yīng)用。
5.聽(tīng)講,體會(huì)定理的應(yīng)用。
6.認(rèn)真做練習(xí)。
(學(xué)生小結(jié):掌握證明與等邊三角形、直角三角形有關(guān)的性質(zhì)定理和判定定理)
等腰三角形教案 7
一、教學(xué)目標(biāo):
1.使學(xué)生掌握等腰三角形的判定定理及其推論;
2.掌握等腰三角形判定定理的運(yùn)用;
3.通過(guò)例題的學(xué)習(xí),提高學(xué)生的邏輯思維能力及分析問(wèn)題解決問(wèn)題的能力;
4.通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;
5.通過(guò)知識(shí)的縱橫遷移感受數(shù)學(xué)的辯證特征。
二、教學(xué)重點(diǎn):
等腰三角形的判定定理
三、教學(xué)難點(diǎn)
性質(zhì)與判定的區(qū)別
四、教學(xué)流程
1、新課背景知識(shí)復(fù)習(xí)
(1)請(qǐng)同學(xué)們說(shuō)出互逆命題和互逆定理的概念
估計(jì)學(xué)生能用自己的語(yǔ)言說(shuō)出,這里重點(diǎn)復(fù)習(xí)怎樣分清題設(shè)和結(jié)論。
(2)等腰三角形的性質(zhì)定理的內(nèi)容是什么?并檢驗(yàn)它的逆命題是否為真命題?
啟發(fā)學(xué)生用自己的語(yǔ)言敘述上述結(jié)論,教師稍加整理后給出規(guī)范敘述:
1.等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等。(簡(jiǎn)稱“等角對(duì)等邊”).
由學(xué)生說(shuō)出已知、求證,使學(xué)生進(jìn)一步熟悉文字轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言的方法。
已知:如圖,△ABC中,∠B=∠C.
求證:AB=AC.
教師可引導(dǎo)學(xué)生分析:
聯(lián)想證有關(guān)線段相等的知識(shí)知道,先需構(gòu)成以AB、AC為對(duì)應(yīng)邊的全等三角形。因?yàn)橐阎螧=∠C,沒(méi)有對(duì)應(yīng)相等邊,所以需添輔助線為兩個(gè)三角形的公共邊,因此輔助線應(yīng)從A點(diǎn)引起。再讓學(xué)生回想等腰三角形中常添的輔助線,學(xué)生可找出作∠BAC的平分線AD或作BC邊上的高AD等證三角形全等的不同方法,從而推出AB=AC.
注意:(1)要弄清判定定理的條件和結(jié)論,不要與性質(zhì)定理混淆。
(2)不能說(shuō)“一個(gè)三角形兩底角相等,那么兩腰邊相等”,因?yàn)檫€未判定它是一個(gè)等腰三角形。
(3)判定定理得到的結(jié)論是三角形是等腰三角形,性質(zhì)定理是已知三角形是等腰三角形,得到邊邊和角角關(guān)系。2.推論1:三個(gè)角都相等的三角形是等邊三角形。 推論2:有一個(gè)角等于60°的等腰三角形是等邊三角形。
要讓學(xué)生自己推證這兩條推論。
小結(jié):證明三角形是等腰三角形的方法:①等腰三角形定義;②等腰三角形判定定理。
證明三角形是等邊三角形的方法:①等邊三角形定義;②推論1;③推論2.
3.應(yīng)用舉例
例1.求證:如果三角形一個(gè)外角的平分線平行于三角形的一邊,那么這個(gè)三角形是等腰三角形。
分析:讓學(xué)生畫圖,寫出已知求證,啟發(fā)學(xué)生遇到已知中有外角時(shí),常??紤]應(yīng)用外角的兩個(gè)特性①它與相鄰的內(nèi)角互補(bǔ);②它等于與它不相鄰的'兩個(gè)內(nèi)角的和。要證AB=AC,可先證明∠B=∠C,因?yàn)橐阎?=∠2,所以可以設(shè)法找出∠B、∠C與∠
1、∠2的關(guān)系。
已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.
求證:AB=AC.
證明:(略)由學(xué)生板演即可。
補(bǔ)充例題:(投影展示)
1.已知:如圖,AB=AD,∠B=∠D.
求證:CB=CD.
分析:解具體問(wèn)題時(shí)要突出邊角轉(zhuǎn)換環(huán)節(jié),要證CB=CD,需構(gòu)造一個(gè)以 CB、CD為腰的等腰三角形,連結(jié)BD,需證∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可證∠ABD=∠ADB,從而證得∠CDB=∠CBD,推出CB=CD.
證明:連結(jié)BD,在
中,
(已知)
(等邊對(duì)等角)
(已知)
即
(等角對(duì)等邊)
小結(jié):求線段相等一般在三角形中求解,添加適當(dāng)?shù)妮o助線構(gòu)造三角形,找出邊角關(guān)系。
2.已知,在 中,
的平分線與
的外角平分線交于D,過(guò)D作DE//BC交AC與F,交AB于E,求證:EF=BE-CF.
分析:對(duì)于三個(gè)線段間關(guān)系,盡量轉(zhuǎn)化為等量關(guān)系,由于本題有兩個(gè)角平分線和平行線,可以通過(guò)角找邊的關(guān)系,BE=DE,DF=CF即可證明結(jié)論。
證明: DE//BC(已知)
,
BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小結(jié):
(1)等腰三角形判定定理及推論。
(2)等腰三角形和等邊三角形的證法。
七。練習(xí)
教材 P.75中
1、
2、3.
八。作業(yè)
教材 P.83 中 1.1)、2)、3);
2、
3、
4、5.
五、板書設(shè)計(jì)
等腰三角形的性質(zhì) 8
知識(shí)結(jié)構(gòu)
重點(diǎn)與難點(diǎn)分析:
本節(jié)內(nèi)容的重點(diǎn)是及其推論。等腰三角形兩底角相等(等邊對(duì)等角)是證明同一三角形中兩角相等的重要依據(jù);而在推論中提到的等腰三角形底邊上的高、中線及頂角平分線三線合一這條重要性質(zhì)也是證明兩線段相等,兩個(gè)角相等及兩直線互相垂直的重要依據(jù)。為證明線段相等,角相等或垂直平提供了方法,在選擇時(shí)注意靈活運(yùn)用。
本節(jié)內(nèi)容的難點(diǎn)是文字題的證明。對(duì)文字題的證明,首先分析出命題的題設(shè)和結(jié)論,結(jié)合題意畫出草圖形,然后根據(jù)圖形寫出已知、求證,做到不重不漏,從而轉(zhuǎn)化為一般證明題。這些環(huán)節(jié)是學(xué)生感到困難的。
教法建議:
數(shù)學(xué)教學(xué)的核心是學(xué)生的“再創(chuàng)造”。根據(jù)這一指導(dǎo)思想,本節(jié)課教學(xué)可通過(guò)精心設(shè)置的一個(gè)個(gè)問(wèn)題鏈,激發(fā)學(xué)生的求知欲,最終在老師的指導(dǎo)下發(fā)現(xiàn)問(wèn)題、解決問(wèn)題。為了充分調(diào)動(dòng)學(xué)生的積極性,使學(xué)生變被動(dòng)學(xué) 具體說(shuō)明如下:
(1)發(fā)現(xiàn)問(wèn)題
本節(jié)課開(kāi)始,先投影顯示圖形及問(wèn)題,讓學(xué)生觀察并發(fā)現(xiàn)結(jié)論。提出問(wèn)題讓學(xué)生思考,創(chuàng)設(shè)問(wèn)題情境,激發(fā)學(xué)生學(xué)習(xí)的欲望和要求。
(2)解決問(wèn)題
對(duì)所得到的結(jié)論通過(guò)教師啟發(fā),讓學(xué)生完成證明。指導(dǎo)學(xué)生歸納總結(jié),從而順其自然得到本節(jié)課的一個(gè)定理及其兩個(gè)推論。 多讓學(xué)生親自實(shí)踐,參與探索發(fā)現(xiàn),領(lǐng)略知識(shí)形成過(guò)程,這是課堂教學(xué)的基本思想和教學(xué)理念。
(3)加深理解
學(xué)生學(xué)習(xí)的過(guò)程是對(duì)知識(shí)的消化和理解的過(guò)程,通過(guò)例題的解決,提高和完善對(duì)定理及其推論理解。這一過(guò)程采用講練結(jié)合、適時(shí)點(diǎn)撥的教學(xué)方法,把學(xué)生的注意力緊緊吸引在解決問(wèn)題身上,讓學(xué)生的思維活動(dòng)在老師的引導(dǎo)下層層展開(kāi),讓學(xué)生大膽參與課堂教學(xué),使他們“聽(tīng)”有所“思”、“練”有所“獲”,使傳授知識(shí)與培養(yǎng)能力融為一體。一。教學(xué)目標(biāo):
1.掌握定理的證明及這個(gè)定理的兩個(gè)推論;
2.會(huì)運(yùn)用證明線段相等;
3.使學(xué)生掌握一般文字題的證明;
4.通過(guò)文字題的證明,提高學(xué)生幾何三種語(yǔ)言的互譯能力;
5.逐步培養(yǎng)學(xué)生邏輯思維能力及分析實(shí)際問(wèn)題解決問(wèn)題的能力;
6.滲透對(duì)稱的數(shù)學(xué)思想,培養(yǎng)學(xué)生數(shù)學(xué)應(yīng)用的觀點(diǎn);
二。教學(xué)重點(diǎn):及其推論
三。教學(xué)難點(diǎn):文字題的證明
四。教學(xué)用具:直尺,微機(jī)
五。教學(xué)方法:?jiǎn)栴}探究法
六。教學(xué)過(guò)程:
1、 性質(zhì)定理的發(fā)現(xiàn)與證明
(1)投影顯示:
一般學(xué)生都能發(fā)現(xiàn)等腰三角形的兩個(gè)底角相等(若有其它發(fā)現(xiàn)也要給予肯定),
(2)提醒學(xué)生:憑觀察作出的判斷準(zhǔn)確嗎?怎樣證明你的判斷?
師生討論后,確定用全等三角形證明,學(xué)生親自動(dòng)手作出證明。證明略。
教師指出:定理提示了三角形邊與角的轉(zhuǎn)化關(guān)系,由兩邊相等轉(zhuǎn)化為兩角相等,這是今后證明兩角相等常用的依據(jù),其功效不亞于利用全等三角形證明兩角相等。
2、推論1的發(fā)現(xiàn)與證明
投影顯示:
由學(xué)生觀察發(fā)現(xiàn),等腰三角形頂角平分線平分底邊并且垂直于底邊。
啟發(fā)學(xué)生自己歸納得出:頂角平分線、底邊上的中線、底邊上的高互相重合。
學(xué)生口述證明過(guò)程。
教師指出:等腰三角形的頂角的平分線,底邊上的中線、底邊上的高這“三線合一”的性質(zhì)有多重功能,可以證明兩線段相等,兩個(gè)角相等以及兩條直線的互相垂直,也可證線段成角的倍分問(wèn)題。
3、推論2的發(fā)現(xiàn)與證明
投影顯示:
一般學(xué)生都能發(fā)現(xiàn)等邊三角形的三個(gè)內(nèi)角都為 .然后啟發(fā)學(xué)生與等腰三角形的“三線合一”作類比,自己得出等邊三角形的“三線合一”。
4、定理及其推論的應(yīng)用
解:(1) (2)另外兩內(nèi)角分別為: (3)
小結(jié):滲透分類思想,培養(yǎng)思維的嚴(yán)密性。
例2、已知:如圖,點(diǎn)D、E在△ABC的邊BC上,AB=AC,AD=AE
求證:BD=CE
證明:作AF⊥BC,,垂足為F,則AF⊥DE
∵AB=AC,AD=AE(已知)
AF⊥BC,AF⊥DE(輔助線作法)
∴BF=CF,DF=EF(等腰三角形底邊上的高與底邊上的中線互相重合)
∴BD=CE
強(qiáng)調(diào)說(shuō)明:等腰三角形中的“三線合一”常常作為解決等腰三角形問(wèn)題的輔助線,添加輔助線時(shí),有時(shí)作頂角的平分線,有時(shí)作底邊中線,有時(shí)作底邊的高,有時(shí)作哪條線都可以,有時(shí)卻不能,還要根據(jù)實(shí)際情況來(lái)定。
第 1 2 頁(yè)
等腰三角形教案 9
教學(xué)目標(biāo)
(一)教學(xué)知識(shí)點(diǎn)
1。等腰三角形的概念。
2。等腰三角形的性質(zhì)。
3。等腰三角形的概念及性質(zhì)的應(yīng)用。
(二)能力訓(xùn)練要求
1。經(jīng)歷作(畫)出等腰三角形的過(guò)程,從軸對(duì)稱的角度去體會(huì)等腰三角形的特點(diǎn)。
2。探索并掌握等腰三角形的性質(zhì)。
(三)情感與價(jià)值觀要求
通過(guò)學(xué)生的操作和思考,使學(xué)生掌握等腰三角形的相關(guān)概念,并在探究等腰三角形性質(zhì)的過(guò)程中培養(yǎng)學(xué)生認(rèn)真思考的習(xí)慣。
教學(xué)重點(diǎn)
1。等腰三角形的概念及性質(zhì)。
2。等腰三角形性質(zhì)的應(yīng)用。
教學(xué)難點(diǎn)
等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用。
教學(xué)過(guò)程
Ⅰ。提出問(wèn)題,創(chuàng)設(shè)情境
[師]在前面的學(xué)習(xí)中,我們認(rèn)識(shí)了軸對(duì)稱圖形,探究了軸對(duì)稱的性質(zhì),并且能夠作出一個(gè)簡(jiǎn)單平面圖形關(guān)于某一直線的軸對(duì)稱圖形,還能夠通過(guò)軸對(duì)稱變換來(lái)設(shè)計(jì)一些美麗的圖案。這節(jié)課我們就是從軸對(duì)稱的角度來(lái)認(rèn)識(shí)一些我們熟悉的幾何圖形。來(lái)研究:①三角形是軸對(duì)稱圖形嗎?②什么樣的三角形是軸對(duì)稱圖形?
[生]有的三角形是軸對(duì)稱圖形,有的三角形不是。
[師]那什么樣的三角形是軸對(duì)稱圖形?
[生]滿足軸對(duì)稱的條件的三角形就是軸對(duì)稱圖形,也就是將三角形沿某一條直線對(duì)折后兩部分能夠完全重合的就是軸對(duì)稱圖形。
[師]很好,我們這節(jié)課就來(lái)認(rèn)識(shí)一種成軸對(duì)稱圖形的三角形──等腰三角形。
Ⅱ。導(dǎo)入新課
在上述過(guò)程中,我們可以得到ABC中AB = AC,這樣就得到了一個(gè)等腰三角形。
[師]按照我們的做法,得到等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形。相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角。
[師]同學(xué)們通過(guò)自己的思考來(lái)做一個(gè)等腰三角形。并在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角。
作一條直線L,在L上取點(diǎn)A,在L外取點(diǎn)B,作出點(diǎn)B關(guān)于直線L的對(duì)稱點(diǎn)C,連結(jié)AB、BC、CA,則可得到一個(gè)等腰三角形。
[生乙]在甲同學(xué)的做法中,A點(diǎn)可以取直線L上的任意一點(diǎn)。
[師]同學(xué)們來(lái)想一想。
1。等腰三角形是軸對(duì)稱圖形嗎?請(qǐng)找出它的對(duì)稱軸。
2。等腰三角形的兩底角有什么關(guān)系?
3。頂角的平分線所在的直線是等腰三角形的對(duì)稱軸嗎?
4。底邊上的中線所在的直線是等腰三角形的對(duì)稱軸嗎?底邊上的高所在的直線呢?
[生甲]等腰三角形是軸對(duì)稱圖形。它的對(duì)稱軸是頂角的平分線所在的直線。因?yàn)榈妊切蔚膬裳嗟?,所以把這兩條腰重合對(duì)折三角形便知:等腰三角形是軸對(duì)稱圖形,它的對(duì)稱軸是頂角的平分線所在的直線。
[師]同學(xué)們把自己做的等腰三角形進(jìn)行折疊,找出它的'對(duì)稱軸,并看它的兩個(gè)底角有什么關(guān)系。
[生乙]我把自己做的等腰三角形折疊后,發(fā)現(xiàn)等腰三角形的兩個(gè)底角相等。
[生丙]我把等腰三角形折疊,使兩腰重合,這樣頂角平分線兩旁的部分就可以重合,所以可以驗(yàn)證等腰三角形的對(duì)稱軸是頂角的平分線所在的直線。
[生丁]我把等腰三角形沿底邊上的中線對(duì)折,可以看到它兩旁的部分互相重合,說(shuō)明底邊上的中線所在的直線是等腰三角形的對(duì)稱軸。
[生戊]老師,我發(fā)現(xiàn)底邊上的高所在的直線也是等腰三角形的對(duì)稱軸。
[師]你們說(shuō)的是同一條直線嗎?大家來(lái)動(dòng)手折疊、觀察。
[生齊聲]它們是同一條直線。
[師]很好?,F(xiàn)在同學(xué)們來(lái)歸納等腰三角形的性質(zhì)。
等腰三角形的性質(zhì):
1。等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫成等邊對(duì)等角)。
2。等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作三線合一)。
[師]由上面折疊的過(guò)程獲得啟發(fā),我們可以通過(guò)作出等腰三角形的對(duì)稱軸,得到兩個(gè)全等的三角形,從而利用三角形的全等來(lái)證明這些性質(zhì)。同學(xué)們現(xiàn)在就動(dòng)手來(lái)寫出這些證明過(guò)程)。
[生甲]如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因?yàn)樗浴鰾AD≌△CAD(SSS)。所以C。
[生乙]如右圖,在△ABC中,AB=AC,作頂角BAC的角平分線AD,因?yàn)樗浴鰾AD≌△CAD。所以BD=CD,BDA=CDA=BDC=90。
[師]很好,甲、乙兩同學(xué)給出了等腰三角形兩個(gè)性質(zhì)的證明,過(guò)程也寫得很條理、很規(guī)范。
Ⅲ。課時(shí)小結(jié)
這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對(duì)性質(zhì)作了簡(jiǎn)單的應(yīng)用。等腰三角形是軸對(duì)稱圖形,它的兩個(gè)底角相等(等邊對(duì)等角),等腰三角形的對(duì)稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高。
我們通過(guò)這節(jié)課的學(xué)習(xí),首先就是要理解并掌握這些性質(zhì),并且能夠靈活應(yīng)用它們。
等腰三角形教案 10
一、教學(xué)目標(biāo):
1、了解作為證明基礎(chǔ)的幾條公理的內(nèi)容,掌握證明的基本步驟和書寫格式。
2、經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過(guò)程。能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理。3、結(jié)合實(shí)例休會(huì)反證的含義。
二、教學(xué)重點(diǎn):
了解作為證明基礎(chǔ)的幾條公理的內(nèi)容,掌握證明的基本步驟和書寫格式。教學(xué)難點(diǎn):能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理。
三、教學(xué)方法:觀察法。
四、教學(xué)過(guò)程:
復(fù)習(xí):1、 什么是等腰三角形?2、 你會(huì)畫一個(gè)等腰三角形嗎?并把你畫的等腰三角形栽剪下來(lái)。3、試用折紙的辦法回憶等腰三角形有哪些性質(zhì)?新課講解:在《證明(一)》一章中,我們已經(jīng)證明了有關(guān)平行線的一些結(jié)論,運(yùn)用下面的公理和已經(jīng)證明的定理,我們還可以證明有關(guān)三角形的一些結(jié)論。同學(xué)們和我一起來(lái)回憶上學(xué)期學(xué)過(guò)的公理w 本套教材選用如下命題作為公理 :w 1.兩直線被第三條直線所截,如果同位角相等,那么這兩條直線平行; w 2.兩條平行線被第三條直線所截,同位角相等; w 3.兩邊夾角對(duì)應(yīng)相等的兩個(gè)三角形全等; (SAS)w 4.兩角及其夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等; (ASA)w 5.三邊對(duì)應(yīng)相等的兩個(gè)三角形全等; (SSS)w 6.全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等。 由公理5、3、4、6可容易證明下面的推論:推論 兩角及其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等。(AAS)證明過(guò)程:已知:∠A=∠D,∠B=∠E,BC=EF求證:△ABC≌△DEF證明:∵∠A=∠D,∠B=∠E(已知)∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形內(nèi)角和等于180°)∠C=180°-(∠A+∠B)∠F=180°-(∠D+∠E)∠C=∠F(等量代換)BC=EF(已知)△ABC≌△DEF(ASA)這個(gè)推論雖然簡(jiǎn)單,但也應(yīng)讓學(xué)生進(jìn)行證明,以熟悉的基本要求和步驟,為下面的推理證明做準(zhǔn)備。
五、議一議:
(1)還記得我們探索過(guò)的等腰三角形的性質(zhì)嗎?(2)你能利用已有的'公理和定理證明這些結(jié)論嗎?等腰三角形(包括等邊三角形)的性質(zhì)學(xué)生已經(jīng)探索過(guò),這里先讓學(xué)生盡可能回憶出來(lái),然后再考慮哪些能夠立即證明。定理:等腰三角形的兩個(gè)底角相等。這一定理可以簡(jiǎn)單敘述為:等邊對(duì)等角。已知:如圖,在ABC中,AB=AC。求證:∠B=∠C我們剛才利用折疊的方法說(shuō)明了這兩個(gè)底角相等。實(shí)際上,折痕將等腰三角形分成了兩個(gè)全等三角形。能否通過(guò)作一條線段,得到兩個(gè)全等的三角形,從而證明這兩個(gè)底角相等呢?證明:取BC的中點(diǎn)D,連接AD?!逜B=AC,BD=CD,AD=AD,∴△ABC△≌△ACD (SSS)∴∠B=∠C (全等三角形的對(duì)應(yīng)邊角相等)讓同學(xué)們通過(guò)探索、合作交流找出其他的證明方法。想一想:在上圖中,線段AD還具有怎樣的性質(zhì)?為什么?由此你能得到什么結(jié)論?應(yīng)讓學(xué)生回顧前面的證明過(guò)程,思考線段AD具有的性質(zhì)和特征,從而得到結(jié)論,這一結(jié)合通常簡(jiǎn)述為“三線合一”。推論 等腰三角形的頂角的平分線、底邊上的中線、底邊上的高互相重合。隨堂練習(xí):做教科書第4頁(yè)第1,2題。課堂小結(jié):通過(guò)本課的學(xué)習(xí)我們了解了作為基礎(chǔ)的幾條公理的內(nèi)容,掌握證明的基本步驟和書寫格式。經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過(guò)程。能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理。探體會(huì)了反證法的含義。五、課外作業(yè):教科書第5頁(yè)第1,2題。
六、板述設(shè)計(jì):
七、課后記:
等腰三角形教案 11
教學(xué)內(nèi)容:
p.30~32
教材簡(jiǎn)析:
本課認(rèn)識(shí)等腰三角形和等邊三角形已經(jīng)它們的特征。教材先給出有兩條邊相等的銳角三角形、直角三角形和鈍角三角形各一個(gè),讓學(xué)生量一量每個(gè)三角形各條邊的長(zhǎng),發(fā)現(xiàn)它們的共同特點(diǎn)是有兩條邊相等,然后概括等腰三角形的概念。接著通過(guò)用紙對(duì)折簡(jiǎn)出等腰三角形,使學(xué)生進(jìn)一步體會(huì)等腰三角形的特征。最后認(rèn)識(shí)等腰三角形各部分的名稱,明確等腰三角形的兩個(gè)底角也相等。認(rèn)識(shí)等邊深刻系的編排與等腰三角形類似,其中等邊三角形的3個(gè)角都相等的特征是讓學(xué)生在對(duì)折中發(fā)現(xiàn)的。
教學(xué)重點(diǎn):
認(rèn)識(shí)等腰三角形和等邊三角形以及它們的特征
教學(xué)目標(biāo):
1、讓學(xué)生在實(shí)際操作中認(rèn)識(shí)等腰三角形和等邊三角形,知道等腰三角形邊和角的名稱,知道等腰三角形兩個(gè)底角相等,等邊三角形3個(gè)內(nèi)角相等。
2、讓學(xué)生在探索圖形特征以及相關(guān)結(jié)論的活動(dòng)中,進(jìn)一步發(fā)展空間觀念,鍛煉思維能力。
3、讓學(xué)生在學(xué)習(xí)活動(dòng)中,進(jìn)一步產(chǎn)生對(duì)數(shù)學(xué)的好奇心,增強(qiáng)動(dòng)手能力和創(chuàng)新意識(shí)。
教學(xué)準(zhǔn)備:
長(zhǎng)方形、正方形紙,剪刀、尺等
教學(xué)過(guò)程:
一、復(fù)習(xí):關(guān)于三角形,你有那些知識(shí)?
1、按角分成三種角
2、三個(gè)內(nèi)角和是180度
算第三個(gè)角的度數(shù),如果是一般三角形,那就用180去減;如果是直角三角形,那就是90去減
二、認(rèn)識(shí)等腰三角形
1、比較老師手邊的`兩塊三角板,他們有什么相同?(都是直角三角形)
有什么不同?(其中有一塊三角板的兩條邊相等,兩個(gè)角相等;而另一塊三角板的角和邊都不相同。)
指出:像這種兩條邊相等的三角形,我們叫它等腰三角形
2、折一折、剪一剪
取一張長(zhǎng)方形紙,對(duì)折;畫出它的對(duì)角線,沿對(duì)角線剪開(kāi);展開(kāi)
觀察:這樣剪出來(lái)的三角形就是我們今天要認(rèn)識(shí)的等腰三角形。想一想:為什么要對(duì)折后再剪呢?(這樣剪出來(lái)的兩條邊肯定是相等的。)
除了兩條邊是相等的,還有什么也是相等的?你是怎么知道的?
等腰三角形的性質(zhì) 12
知識(shí)結(jié)構(gòu)
重點(diǎn)與難點(diǎn)分析:
本節(jié)內(nèi)容的重點(diǎn)是及其推論。等腰三角形兩底角相等(等邊對(duì)等角)是證明同一三角形中兩角相等的重要依據(jù);而在推論中提到的等腰三角形底邊上的高、中線及頂角平分線三線合一這條重要性質(zhì)也是證明兩線段相等,兩個(gè)角相等及兩直線互相垂直的重要依據(jù)。為證明線段相等,角相等或垂直平提供了方法,在選擇時(shí)注意靈活運(yùn)用。
本節(jié)內(nèi)容的難點(diǎn)是文字題的證明。對(duì)文字題的證明,首先分析出命題的題設(shè)和結(jié)論,結(jié)合題意畫出草圖形,然后根據(jù)圖形寫出已知、求證,做到不重不漏,從而轉(zhuǎn)化為一般證明題。這些環(huán)節(jié)是學(xué)生感到困難的。
教法建議:
數(shù)學(xué)教學(xué)的核心是學(xué)生的“再創(chuàng)造”。根據(jù)這一指導(dǎo)思想,本節(jié)課教學(xué)可通過(guò)精心設(shè)置的一個(gè)個(gè)問(wèn)題鏈,激發(fā)學(xué)生的求知欲,最終在老師的指導(dǎo)下發(fā)現(xiàn)問(wèn)題、解決問(wèn)題。為了充分調(diào)動(dòng)學(xué)生的積極性,使學(xué)生變被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí),本課教學(xué)擬用啟發(fā)式問(wèn)題教學(xué)法。具體說(shuō)明如下:
(1)發(fā)現(xiàn)問(wèn)題
本節(jié)課開(kāi)始,先投影顯示圖形及問(wèn)題,讓學(xué)生觀察并發(fā)現(xiàn)結(jié)論。提出問(wèn)題讓學(xué)生思考,創(chuàng)設(shè)問(wèn)題情境,激發(fā)學(xué)生學(xué)習(xí)的欲望和要求。
(2)解決問(wèn)題
對(duì)所得到的結(jié)論通過(guò)教師啟發(fā),讓學(xué)生完成證明。指導(dǎo)學(xué)生歸納總結(jié),從而順其自然得到本節(jié)課的一個(gè)定理及其兩個(gè)推論。 多讓學(xué)生親自實(shí)踐,參與探索發(fā)現(xiàn),領(lǐng)略知識(shí)形成過(guò)程,這是課堂教學(xué)的基本思想和教學(xué)理念。
(3)加深理解
學(xué)生學(xué)習(xí)的過(guò)程是對(duì)知識(shí)的消化和理解的過(guò)程,通過(guò)例題的解決,提高和完善對(duì)定理及其推論理解。這一過(guò)程采用講練結(jié)合、適時(shí)點(diǎn)撥的教學(xué)方法,把學(xué)生的注意力緊緊吸引在解決問(wèn)題身上,讓學(xué)生的思維活動(dòng)在老師的引導(dǎo)下層層展開(kāi),讓學(xué)生大膽參與課堂教學(xué),使他們“聽(tīng)”有所“思”、“練”有所“獲”,使傳授知識(shí)與培養(yǎng)能力融為一體。一。教學(xué)目標(biāo) :
1.掌握定理的證明及這個(gè)定理的兩個(gè)推論;
2.會(huì)運(yùn)用證明線段相等;
3.使學(xué)生掌握一般文字題的證明;
4.通過(guò)文字題的證明,提高學(xué)生幾何三種語(yǔ)言的互譯能力;
5.逐步培養(yǎng)學(xué)生邏輯思維能力及分析實(shí)際問(wèn)題解決問(wèn)題的能力;
6.滲透對(duì)稱的數(shù)學(xué)思想,培養(yǎng)學(xué)生數(shù)學(xué)應(yīng)用的觀點(diǎn);
二。教學(xué)重點(diǎn):及其推論
三。教學(xué)難點(diǎn) :文字題的證明
四。教學(xué)用具:直尺,微機(jī)
五。教學(xué)方法:?jiǎn)栴}探究法
六。教學(xué)過(guò)程 :
1、 性質(zhì)定理的發(fā)現(xiàn)與證明
(1)投影顯示:
一般學(xué)生都能發(fā)現(xiàn)等腰三角形的兩個(gè)底角相等(若有其它發(fā)現(xiàn)也要給予肯定),
(2)提醒學(xué)生:憑觀察作出的判斷準(zhǔn)確嗎?怎樣證明你的判斷?
師生討論后,確定用全等三角形證明,學(xué)生親自動(dòng)手作出證明。證明略。
教師指出:定理提示了三角形邊與角的轉(zhuǎn)化關(guān)系,由兩邊相等轉(zhuǎn)化為兩角相等,這是今后證明兩角相等常用的依據(jù),其功效不亞于利用全等三角形證明兩角相等。
2、推論1的發(fā)現(xiàn)與證明
投影顯示:
由學(xué)生觀察發(fā)現(xiàn),等腰三角形頂角平分線平分底邊并且垂直于底邊。
啟發(fā)學(xué)生自己歸納得出:頂角平分線、底邊上的中線、底邊上的高互相重合。
學(xué)生口述證明過(guò)程。
教師指出:等腰三角形的頂角的平分線,底邊上的中線、底邊上的高這“三線合一”的性質(zhì)有多重功能,可以證明兩線段相等,兩個(gè)角相等以及兩條直線的互相垂直,也可證線段成角的倍分問(wèn)題。
3、推論2的發(fā)現(xiàn)與證明
投影顯示:
一般學(xué)生都能發(fā)現(xiàn)等邊三角形的三個(gè)內(nèi)角都為 .然后啟發(fā)學(xué)生與等腰三角形的“三線合一”作類比,自己得出等邊三角形的“三線合一”。
4、定理及其推論的應(yīng)用
解:(1) (2)另外兩內(nèi)角分別為: (3)
小結(jié):滲透分類思想,培養(yǎng)思維的嚴(yán)密性。
例2、已知:如圖,點(diǎn)D、E在△ABC的邊BC上,AB=AC,AD=AE
求證:BD=CE
證明:作AF⊥BC,,垂足為F,則AF⊥DE
∵AB=AC,AD=AE(已知)
AF⊥BC,AF⊥DE(輔助線作法)
∴BF=CF,DF=EF(等腰三角形底邊上的高與底邊上的中線互相重合)
∴BD=CE
強(qiáng)調(diào)說(shuō)明:等腰三角形中的“三線合一”常常作為解決等腰三角形問(wèn)題的輔助線,添加輔助線時(shí),有時(shí)作頂角的平分線,有時(shí)作底邊中線,有時(shí)作底邊的高,有時(shí)作哪條線都可以,有時(shí)卻不能,還要根據(jù)實(shí)際情況來(lái)定。
例3、已知:如圖,D是等邊△ABC內(nèi)一點(diǎn),DB=DA,BP=AB, DBP= DBC
求證: P=
證明:連結(jié)OC
在△BPD和△BCD中
在△ADC和△BCD中
因此, P=
例4 求證:等腰三角形兩腰上中線的交點(diǎn)到底邊兩端點(diǎn)的距離相等
已知:如圖,AB=AC,BD、CE分別為AC邊、AB邊的中線,它們相交于F點(diǎn)
求證:BF=CF
證明:∵BD、CE是△ABC的兩條中線,AB=AC
∴AD=AE,BE=CD
在△ABD和△ACE中
∴△ABD≌△ACE
∴ 1= 2
在△BEF和△CED中
∴△BEF≌△CED
∴BF=FC
設(shè)想:例1到例4,由易到難地安排學(xué)生對(duì)新授內(nèi)容的練習(xí)和鞏固。在以上教學(xué)中,特別注意“一般解題方法”的運(yùn)用。
在四個(gè)例題的教學(xué)中,充分發(fā)揮學(xué)生與學(xué)生之間的互補(bǔ)性,從而提高認(rèn)識(shí),完善認(rèn)知結(jié)構(gòu),使課?
6、課堂小結(jié):
教師引導(dǎo)學(xué)生小結(jié)
(1)、
(2)、等邊三角形的性質(zhì)
(3)、文字證明題的書寫步驟
7、布置作業(yè) :
a、 書面作業(yè) P96#1、2
b、 上交作業(yè) P96#4、7、8
c、 思考題:
已知:如圖:在△ABC中,AB=AC,E在CA的延長(zhǎng)線上,∠AEF=∠AFE.
求證:EF⊥BC
證明 : 作BC邊上的高AM,M為垂足
∵AM⊥BC
∴∠BAM=∠CAM
又∵∠BAC為△AEF的外角
∴∠BAC =∠E+∠EFA
即∠BAM+∠CAM=∠E=∠EFA
∵∠AEF=∠AFE
∴∠CAM=∠E
∴EF∥AM
∵AM⊥BC
∴EF⊥BC
七。板書設(shè)計(jì) :
等腰三角形的性質(zhì) 13
一、教學(xué)目的
使學(xué)生熟練地掌握等腰三角形的性質(zhì)。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):等腰三角形性質(zhì)的應(yīng)用。
難點(diǎn):添加合適的輔助線。
三、教學(xué)過(guò)程
復(fù)習(xí)提問(wèn)
1 .等腰三角形的性質(zhì)。
2.等腰三角形的底角一定是_角?
3.等腰三角形的底角為20°,求它的頂角度數(shù)。
引入新課
等腰三角形一腰上的中線把它的周長(zhǎng)分為15cm和6cm的兩部分,求這三角形各邊的長(zhǎng)。
學(xué)生可能利用算術(shù)的方法,計(jì)算出腰長(zhǎng)為10底邊長(zhǎng)為1.也可能算不出來(lái),這里教師可作如下引導(dǎo):
在圖1中,AB=AC,D為AB的中點(diǎn)(即AD=DB),設(shè) AD=xcm,則 AB=AC=2cm(中線定義).由AC+AD=15cm,得
2x+x=15.
解得 x=5,……
本題是利用列方程的方法解得的,此法對(duì)于某些幾何計(jì)算題來(lái)說(shuō),簡(jiǎn)捷而有效。
新課
例2 已知:圖2,在△ABC中,AB=AC,點(diǎn)D在AC上,且 BD=BC=AD.求△ABC各角的度數(shù)。
分析:欲求三角形各角度數(shù)。只需求出∠A度數(shù),把∠A度數(shù)作為一個(gè)未知數(shù)x,則∠A=∠1=x°,∠2=∠A+∠1=2x°,∠ABC=∠C=∠2=2x°.應(yīng)用三角形內(nèi)角和定理于△ABC,求出方程所對(duì)應(yīng)的幾何等式:∠A+∠ABC+∠C=180°,即可得出關(guān)于x的方程。
例3 已知:如圖3,點(diǎn)D、E在△ABC的邊BC上,AB=AC,AD=AE.求證:BD=CE.
通過(guò)分析使學(xué)生發(fā)現(xiàn),要作AF⊥BC即底邊上的高這條輔助線(這是證明的關(guān)鍵所在),并告訴學(xué)生這是等腰三角形中一種常見(jiàn)的輔助線。利用這條輔助線就很容易證得結(jié)論。并說(shuō)明,這是利用等腰三角形的“三線合一”性質(zhì)來(lái)證明的題目。
小結(jié)
1.列方程解幾何計(jì)算題是幾何計(jì)算題的一種重要解法,在這種解法中,尋求幾何等式(如例2中∠A+∠ABC+∠C=180°)是基礎(chǔ),把幾何等式的各項(xiàng)轉(zhuǎn)化為未知數(shù)x的代數(shù)式是關(guān)鍵(如∠A=x°,∠ABC=∠C=2x°).
2.對(duì)于等腰三角形的”三線合一”性要靈活運(yùn)用。
練習(xí):略
作業(yè) :略
思考題:例3中輔助線改為△ABC的頂角平分線AF,寫出證明過(guò)程。
四、教學(xué)注意問(wèn)題
1.等腰三角形性質(zhì)的靈活、綜合應(yīng)用,防止依賴于全等三角形證明線段或角相等的思維定勢(shì)。
2.要防止“三線合一”性在應(yīng)用中出現(xiàn)的錯(cuò)誤。
等腰三角形教案 14
教學(xué)目標(biāo)
1.掌握等腰三角形的判定定理.
2.知道等邊三角形的性質(zhì)以及等邊三角形的判定定理.
3.經(jīng)歷折紙、畫圖、觀察、推理等操作活動(dòng)的合理性進(jìn)行證明的過(guò)程,不斷感受合情推理和演繹推理都是人們正確認(rèn)識(shí)事物的重要途徑.
4.會(huì)用“因?yàn)椤浴碛墒恰被颉案鶕?jù)……因?yàn)椤浴钡确绞絹?lái)進(jìn)行說(shuō)理,進(jìn)一步發(fā)展有條理地思考和表達(dá),提高演繹推理的能力.
教學(xué)重點(diǎn)
熟練地掌握等腰三角形的判定定理.
教學(xué)難點(diǎn)
正確熟練地運(yùn)用定理解決問(wèn)題及簡(jiǎn)潔地邏輯推理.
教學(xué)過(guò)程(教師活動(dòng))
學(xué)生活動(dòng)
設(shè)計(jì)思路
前面我們學(xué)習(xí)了等腰三角形的軸對(duì)稱性,說(shuō)說(shuō)你對(duì)等腰三角形的認(rèn)識(shí).
本節(jié)課我們將繼續(xù)學(xué)習(xí)等腰三角形的軸對(duì)稱性.
一、創(chuàng)設(shè)情境
如圖所示△abc是等腰三角形,ab=ac,它的一部分被墨水涂沒(méi)了,只留下一條底邊bc和一個(gè)底角∠c.請(qǐng)同學(xué)們想一想,有沒(méi)有辦法把原來(lái)的等腰三角形abc重新畫出來(lái)?大家試試看.
1.學(xué)生觀察思考,提出猜想.
2.小組交流討論.
一方面回憶等邊對(duì)等角及其研究方法,為學(xué)生研究等角對(duì)等邊提供研究的方法,另一方面通過(guò)創(chuàng)設(shè)情境,自然地引入課題.
二、探索發(fā)現(xiàn)一
請(qǐng)同學(xué)們分別拿出一張半透明紙,做一個(gè)實(shí)驗(yàn),按以下方法進(jìn)行操作:
(1)在半透明紙上畫一條長(zhǎng)為6cm的線段bc.
(2)以bc為始邊,分別以點(diǎn)b和點(diǎn)c為頂點(diǎn),在bc的同側(cè)用量角器畫兩個(gè)相等的銳角,兩角終邊的交點(diǎn)為a.
(3)用刻度尺找出bc的中點(diǎn)d,連接ad,然后沿ad對(duì)折.
問(wèn)題1:ab與ac有什么數(shù)量關(guān)系?
問(wèn)題2:請(qǐng)用語(yǔ)言敘述你的發(fā)現(xiàn).
1.根據(jù)實(shí)驗(yàn)要求進(jìn)行操作.
2.畫出圖形、觀察猜想.
3.小組合作交流、展示學(xué)習(xí)成果.
演示折疊過(guò)程為進(jìn)一步的說(shuō)理和推理提供思路.
通過(guò)動(dòng)手操作、演示、觀察、猜想、體驗(yàn)、感悟等學(xué)習(xí)活動(dòng),獲得知識(shí)為今后學(xué)生進(jìn)行探索活動(dòng)積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn).
三、分析證明
思考:我們利用了折疊、度量得到了上述結(jié)論,那么如何證明這些結(jié)論呢?
問(wèn)題3:已知如圖,在△abc中,
∠b=∠c.求證:ab=ac.
引導(dǎo)學(xué)分析問(wèn)題,綜合證明.
思考:你還有不同的證明方法嗎?
問(wèn)題4:“等邊對(duì)等角”與“等角對(duì)等邊”, 它們有什么區(qū)別和聯(lián)系?
思考——討論——展示.
1.學(xué)生獨(dú)立完成證明過(guò)程的基礎(chǔ)上進(jìn)行小組交流.
2.班級(jí)展示:小組代表展示學(xué)習(xí)成果.
在實(shí)驗(yàn)的基礎(chǔ)上獲得問(wèn)題解決的思路,在合情推理的基礎(chǔ)上讓學(xué)生經(jīng)歷演繹推理的'過(guò)程,培養(yǎng)學(xué)生的邏輯思維能力.
通過(guò)“你有不同的證明方法嗎”的問(wèn)題,讓學(xué)生學(xué)會(huì)質(zhì)疑,學(xué)會(huì)從不同的角度思考問(wèn)題,培養(yǎng)學(xué)生的發(fā)散性思維,激發(fā)探究問(wèn)題的欲望和興趣,通過(guò)對(duì)問(wèn)題4的思考讓學(xué)生加深對(duì)性質(zhì)與判定的理解.
四、探索發(fā)現(xiàn)二
問(wèn)題5:什么是等邊三角形?等邊三角形與等腰三角形有什么區(qū)別和聯(lián)系?
問(wèn)題6:等邊三角形有什么性質(zhì)?
問(wèn)題7:一個(gè)三角形滿足什么條件就是等邊三角形了?為什么?
1.學(xué)生閱讀教材,進(jìn)行自主學(xué)習(xí).
2.小組討論交流.
3.展示學(xué)習(xí)成果:等邊三角形的概念、等邊三角形的性質(zhì)、
等腰三角形教案 15
(一)、溫故知新,激發(fā)情趣:
1、軸對(duì)稱圖形的有關(guān)概念,什么樣的三角形叫做等腰三角形?
2、指出等腰三角形的腰、底邊、頂角、底角。
(首先教師提問(wèn)了解前置知識(shí)掌握情況,學(xué)生動(dòng)腦思考、口答。)
(二) 、構(gòu)設(shè)懸念,創(chuàng)設(shè)情境:
3、一般三角形有哪些特征? (三條邊、三個(gè)內(nèi)角、高、中線、角平分線)
4、等腰三角形除具有一般三角形的特征外,還有那些特殊特征?
(把問(wèn)題3作為教學(xué)的出發(fā)點(diǎn),激發(fā)學(xué)生的學(xué)習(xí)興趣。問(wèn)題4給學(xué)生留下懸念。)
(三)、目標(biāo)導(dǎo)向,自然引入:
本節(jié)課我們一起研究——9。3 等腰三角形
(板書課題) 9。3 等腰三角形(了解本節(jié)課的學(xué)習(xí)內(nèi)容)
(四)、設(shè)問(wèn)質(zhì)疑,探究嘗試:
結(jié)合問(wèn)題4請(qǐng)同學(xué)們拿出準(zhǔn)備好的不同規(guī)格的等腰三角形,與教師一起演示(模型)等腰三角形是軸對(duì)稱圖形的實(shí)驗(yàn),引導(dǎo)學(xué)生觀察實(shí)驗(yàn)現(xiàn)象。
[問(wèn)題]通過(guò)觀察,你發(fā)現(xiàn)了什么結(jié)論?
(讓學(xué)生由實(shí)驗(yàn)或演示指出各自的發(fā)現(xiàn),并加以引導(dǎo),用規(guī)范的數(shù)學(xué)語(yǔ)言進(jìn)行逐條歸納,最后得出等腰三角形的特征)
[結(jié)論]等腰三角形的兩個(gè)底角相等。
(板書學(xué)生發(fā)現(xiàn)的結(jié)論)
等腰三角形特征1:等腰三角形的兩個(gè)底角相等
在△ ABC中,∵AB=AC( )
∴∠B=∠C( )
[方法]可由學(xué)生從多種途徑思考,縱橫聯(lián)想所學(xué)知識(shí)方法,為命題的證明打下基礎(chǔ)。
例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度數(shù)。
〔學(xué)生思考,教師分析,板書〕
練習(xí)思考:課本P84 練習(xí)2(等腰三角形的底角可以是直角或鈍角嗎?為什么?)
〔繼續(xù)觀察實(shí)驗(yàn)紙片圖形〕(以下內(nèi)容學(xué)生可能在前面實(shí)驗(yàn)中就會(huì)提出)
[問(wèn)題]紙片中的等腰三角形的對(duì)稱軸可能是我們以前學(xué)習(xí)過(guò)的什么線?
(通過(guò)設(shè)問(wèn)、質(zhì)疑、小組討論,歸納總結(jié),培養(yǎng)學(xué)生概括數(shù)學(xué)問(wèn)題的能力)
[引導(dǎo)學(xué)生觀察]折痕AD是等腰三角形的對(duì)稱軸,AD可能還是等腰三角形的什么線?
[學(xué)生發(fā)現(xiàn)]AD是等腰三角形的。頂角平分線、底邊中線、底邊上的高。
[結(jié)論]等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合。簡(jiǎn)稱為:“三線合一”。
等腰三角形特征2:
等腰三角形的頂角平分線、底邊上的中線和高線互相重合(三線合一)
(出示小黑板)
[填空]根據(jù)等腰三角形特征的推論,在△ABC中
(1)∵AB=AC,AD⊥BC,
∴∠_=∠_,_=_;
(2)∵AB=AC,AD是中線,
∴∠_=∠_,_⊥_;
(3)∵AB=AC,AD是角平分線,
∴_⊥_,_=_
通過(guò)直觀模具演示,引出推論2,并出示小黑板[填空]、強(qiáng)調(diào)“三線合一”的運(yùn)用方法。使學(xué)生留下深刻印象,并通過(guò)[填空]了解三線合一的運(yùn)用方法。
強(qiáng)調(diào)“三線合一”特征中的三線段前的定語(yǔ)的重要性,可讓學(xué)生實(shí)際畫圖驗(yàn)證。
(五)、啟發(fā)誘導(dǎo),初步運(yùn)用:
例2:如圖,在△ABC中,AB=AC,D是BC邊上的中點(diǎn),
∠B=30°,求∠1和∠ADC的度數(shù)。
課堂練習(xí):
(1)P85練習(xí)3
(2)例3已知:如圖,房屋的頂角∠BAC=100°,過(guò)屋頂A的立柱AD⊥BC、屋椽AB=AC.求頂架上∠B、∠C、∠BAD、∠CAD的度數(shù).
(這是一道幾何計(jì)算題,要使學(xué)生加深對(duì)本課內(nèi)容的應(yīng)用,引導(dǎo)學(xué)生寫出解題過(guò)程)
(六)、歸納小結(jié),強(qiáng)化思想:
(1)敘述等腰三角形的特征及其應(yīng)用;
(2)利用等腰三角形的特征可證明:兩角相等,兩線段相等,兩直線互相垂直。
(3) 聯(lián)想方法要經(jīng)常運(yùn)用,對(duì)今后解題大有裨益。
(七)、布置作業(yè),引導(dǎo)預(yù)習(xí):
P86 習(xí)題9。3 1、3、4 預(yù)習(xí)課本:P85 等腰三角形
課后思考題:等腰三角形兩腰上的中線(高線)是否相等?為什么?
等腰三角形的性質(zhì) 16
一、教學(xué)目的
使學(xué)生掌握等腰三角形性質(zhì)定理(包括推論)及其證明。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):等腰三角形的性質(zhì)。
難點(diǎn):文字命題的證明。
三、教學(xué)過(guò)程
復(fù)習(xí)提問(wèn)
什么叫做等腰三角形?什么是等腰三角形的腰、底邊、頂點(diǎn)和底角?
引入新課
教師演示事先備好的等腰三角形紙片對(duì)折,使兩腰疊在一起,發(fā)現(xiàn)它的兩底角重合,從而得到等腰三角形兩底角相等的命題,當(dāng)然此命題的真實(shí)性還需推理論證。
新課
1.等腰三角形的性質(zhì)定理 等腰三角形的兩底角相等(簡(jiǎn)寫成“等邊對(duì)等角”).
讓學(xué)生回憶前面學(xué)過(guò)的文字命題證明的全過(guò)程。引導(dǎo)學(xué)生寫出已知、求證,并且都要結(jié)合圖形使之具體化。
2.推論1 等腰三角形頂角平分線平分底邊且垂直于底邊。
從性質(zhì)定理的證明過(guò)程可以知道(如圖1)BD=DC,∠ADB=∠ADC,所以AD平分BC,且AD⊥BC,即得推論。
從推論1 可以知道,等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。
推論2 等邊三角形的各角都相等,并且每一個(gè)角都等于60°.
3.等腰三角形性質(zhì)的應(yīng)用。等腰三角形的性質(zhì)有著重要的應(yīng)用,一般說(shuō),利用“等腰三角形兩底角相等”的性質(zhì)證明兩角相等;利用“等腰三角形底邊上的三條主要線段重合”的性質(zhì),來(lái)證明兩條線段相等、兩個(gè)角相等及兩條直線互相垂直;利用“等邊三角形各角相等,并且每一個(gè)角都等于60°”的性質(zhì),來(lái)證明一個(gè)角是60°,或作圖中通過(guò)作等邊三角形,作出一個(gè)60°的角。
例1 已知:如圖2,房屋的頂角∠BAC=100°,過(guò)屋頂A的立柱AD⊥BC、屋椽AB=AC.求頂架上∠B、∠C、∠BAD、∠CAD的度數(shù)。
這是一道幾何計(jì)算題,要使學(xué)生熟悉解計(jì)算題的步驟,引導(dǎo)學(xué)生寫出解題過(guò)程。
小結(jié)
1.敘述等腰三角形的性質(zhì)(本堂所講定理及推論)及其應(yīng)用。
2.等腰三角形頂角與底角之間的常用關(guān)系式:在△ABC中,AB=AC,則
(1)∠A=180°-2∠B=180°-2∠C;
3.已知等腰三角形一個(gè)角的度數(shù),求其它兩個(gè)角的度數(shù):(1)若已知角是鈍角或直角,則此角一定為頂角,于是由2中(2)可求出兩底角;(2)若已知角是銳角,則此角可能是頂角,也可能是底角。若為前者,可按2中(2)求出兩底角。若為后者,則可按2中(1)求出頂角。
練習(xí):略
作業(yè) :略
四、教學(xué)注意問(wèn)題
1.等腰三角形的性質(zhì)在今后解(證)幾何題中有著重要的應(yīng)用,務(wù)必引起學(xué)生重視。且應(yīng)反復(fù)練習(xí)。
2.幾何計(jì)算題的一般解題步驟。
《等腰三角形的性質(zhì)》說(shuō)課稿 17
一、教材分析
1、教材的地位和作用
《等腰三角形的性質(zhì)》是“華東師大版八年級(jí)數(shù)學(xué)(上)”第十三章第三節(jié)第一課時(shí)的內(nèi)容。本節(jié)先課利用軸對(duì)稱的知識(shí)來(lái)探索發(fā)現(xiàn)等腰三角形的有關(guān)性質(zhì),然后利用全等三角形的知識(shí)證明這些性質(zhì)。學(xué)習(xí)過(guò)程中運(yùn)用的“操作——觀察——發(fā)現(xiàn)——猜想——論證——應(yīng)用”的方法是探究數(shù)學(xué)知識(shí)的常用方法。同時(shí)“等邊對(duì)等角”和“三線合一”的性質(zhì)是又是接下來(lái)學(xué)習(xí)等邊三角形知識(shí)以及等腰三角形的判定的基礎(chǔ)知識(shí),更是今后論證兩個(gè)角相等、兩條線段相等、兩條線垂直的重要依據(jù)。起著承前啟后的作用。
2、教材的教學(xué)目標(biāo):
①知識(shí)與技能目標(biāo):
掌握等腰三角形的有關(guān)概念和相關(guān)性質(zhì),能運(yùn)用它們解決等腰三角形的邊、角計(jì)算問(wèn)題。
②過(guò)程與方法目標(biāo):
通過(guò)實(shí)踐、觀察、同組間學(xué)生以及小組與小組間的合作與交流,培養(yǎng)學(xué)生多角度思考問(wèn)題和分析問(wèn)題、解決問(wèn)題的能力。③情感與態(tài)度目標(biāo):
通過(guò)合作交流培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作、樂(lè)于助人的品質(zhì)。
3、教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn):等腰三角形“等邊對(duì)等角”和“三線合一”性質(zhì)的探究和應(yīng)用。
難點(diǎn):等腰三角形性質(zhì)的推理證明。
二、學(xué)情分析
八年級(jí)上期學(xué)生學(xué)習(xí)幾何知識(shí)有了初步的抽象思維感知,有一定的形象直觀思維能力,能進(jìn)行簡(jiǎn)單的推理論證。但其運(yùn)用數(shù)學(xué)思維的廣闊性、緊密性、靈活性比較欠缺,在學(xué)習(xí)過(guò)程中要加強(qiáng)引導(dǎo)和培養(yǎng)。
三、教法與手段
根據(jù)本課內(nèi)容特點(diǎn)和初二學(xué)生思維活動(dòng)的特點(diǎn),在教學(xué)中我將采用“操作——觀察——發(fā)現(xiàn)——猜想——論證——應(yīng)用”的教學(xué)法,利用分組活動(dòng),組間合作與交流從而達(dá)到對(duì)“等邊對(duì)等角”和“三線合一”的性質(zhì)的探究的層層深入。另外,我還將采用多媒體輔助教學(xué),呈現(xiàn)更直觀的形象,激發(fā)學(xué)生的'積極性、主動(dòng)性,增大課堂容量,提高教學(xué)效率。
四、學(xué)法設(shè)計(jì)
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:數(shù)學(xué)的抽象結(jié)論,應(yīng)以觀察、實(shí)驗(yàn)為前提,幾何教學(xué)應(yīng)該把實(shí)驗(yàn)方法與邏輯分析結(jié)合起來(lái)。結(jié)合這一理念在探究等腰三角形的性質(zhì)時(shí)我將采用學(xué)生實(shí)驗(yàn)操作、小組合作、觀察發(fā)現(xiàn)、師生互動(dòng)、學(xué)生互動(dòng)的學(xué)習(xí)方式。
五、教學(xué)過(guò)程設(shè)計(jì)
(一)創(chuàng)設(shè)情景、導(dǎo)入新課
①?gòu)?fù)習(xí)提問(wèn):向同學(xué)們出示幾張精美的建筑物圖片,引入等腰三角形。
(設(shè)計(jì)意圖:感知數(shù)學(xué)知識(shí)和實(shí)際生活聯(lián)系緊密,培養(yǎng)觀察力,感受身邊處處有數(shù)學(xué)。)
②等腰三角形的相關(guān)概念:
1定義:兩條邊相等的三角形叫做等腰三角形。
邊:等腰三角形中,相等的兩條邊叫做腰,另一條邊叫做底邊。
角:等腰三角形中,兩腰的夾角叫做頂角,腰和底邊的夾角叫做底角。
③設(shè)問(wèn):等腰三角形具有哪些特殊的性質(zhì)呢?(引入新課)
(二)實(shí)驗(yàn)探索、得出猜想:
①動(dòng)動(dòng)手:讓同學(xué)們用剪刀在長(zhǎng)方形紙片上剪下等腰三角形,每個(gè)人的等腰三角形的大小
和形狀可以不一樣,把紙片對(duì)折,讓兩腰重合在一起,你能發(fā)現(xiàn)什么現(xiàn)象?“比一比”看誰(shuí)思考的結(jié)論最多。
(設(shè)計(jì)意圖:以六人小組為單位學(xué)生親自操作實(shí)驗(yàn),填寫導(dǎo)學(xué)案。通過(guò)組內(nèi)合作與交流,集
思廣益讓學(xué)生用自己的語(yǔ)言在小組內(nèi)表達(dá)自己的發(fā)現(xiàn)。)
②得出猜想:可讓學(xué)生有充分的時(shí)間觀察、思考、交流、可能得到的結(jié)論:
(1)等腰三角形是軸對(duì)稱圖形
(2)∠B=∠C
(3)BD=CD,AD為底邊上的中線
(4)∠ADB=∠ADC=90°,AD為底邊上的高線
(5)∠BAD=∠CAD,AD為頂角平分線
(設(shè)計(jì)意圖:以小組為單位派代表發(fā)言即組間交流補(bǔ)充,引導(dǎo)歸納提煉,使不同層次的學(xué)生都能感受新知,建立新的知識(shí)體? )
(三)證明猜想、形成定理:
1、結(jié)論(2)∠B=∠C你能用一個(gè)命題表達(dá)這一結(jié)論并論證它的正確性嗎?
(1)語(yǔ)言總結(jié):等腰三角形的兩底角相等。(簡(jiǎn)寫成“等邊對(duì)等角”)
(2)怎樣論證這個(gè)一命題的正確性呢?
①為證∠B=∠C,需要添加輔助線構(gòu)造以∠B、∠C為元素的兩個(gè)全等三角形。
②探討添加輔助線的方法,讓學(xué)生選擇一種輔助線并完成證明過(guò)程。
設(shè)計(jì)說(shuō)明:以上過(guò)程分小組討論,在探索過(guò)程中鼓勵(lì)學(xué)生尋求不同(作高、中線、角平分線)的方法來(lái)解決問(wèn)題。
利用展臺(tái)展示各小組不同的證明方法,讓學(xué)生的個(gè)性得到充分的展示。
(3)得出等腰三角形的性質(zhì)1:等腰三角形的兩底角相等。(簡(jiǎn)寫成“等邊對(duì)等角”)
2、結(jié)論(3)(4)(5)你也能用一個(gè)命題表達(dá)這一結(jié)論并論證它的正確性嗎?
(1)結(jié)合性質(zhì)一的證明鼓勵(lì)學(xué)生證明總結(jié)的命題
(2)得出等腰三角形的性質(zhì)2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。
(3)“三線合一”的幾何表達(dá):
如圖,在△ABC中,AB=AC,點(diǎn)D在BC上
①(1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD
②(2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC(為了方便記憶可以說(shuō)成“知一求二!”)
③(3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD
2設(shè)計(jì)意圖:充分調(diào)動(dòng)各組學(xué)生的積極性、主動(dòng)性,采用各小組競(jìng)爭(zhēng)的方式,參照性質(zhì)1的探索完成本性質(zhì)的探索與證明。通過(guò)本性質(zhì)的探索讓不同的學(xué)生有不同的收獲,讓每個(gè)學(xué)生的能力都得到提升。
(四)實(shí)例剖析、鞏固新知:
1、例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度數(shù)
2、例2:在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),∠B=30
(1)求∠ADC的度數(shù)(2)求∠BAD的度數(shù)
此題的目的在于等腰三角形“等邊對(duì)等角”和“三線合一”性質(zhì)的綜合運(yùn)用,以及怎么書寫解答題,強(qiáng)調(diào)“三線合一”的表達(dá)過(guò)程。
解:(1)∵AB=AC,D是BC邊上的中點(diǎn)(已知)
∴AD⊥BC,∠BAD=∠CAD(等腰三角形的“三線合一”)∴∠ADC=∠ADB=90°(垂直的定義)
(2)∵∠BAD+∠B+∠ADB=180°(三角形內(nèi)角和等于180°)∴∠BAD=180°—∠B—∠ADB
=180°—30°—90°=60°
(設(shè)計(jì)意圖:設(shè)計(jì)例題1鞏固等腰三角形“等邊對(duì)等角的性質(zhì)”的理解,讓學(xué)生學(xué)以致用,獲得成就感,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心。而例題2主要是體會(huì)等腰三角形“三線合一”性質(zhì)的運(yùn)用。這兩個(gè)例題作為課本上的例題是基礎(chǔ)新知的鞏固,要求能正確的寫出解題過(guò)程。)
(五)課堂練習(xí)、總結(jié)所得:
1、先完成課后81頁(yè)練習(xí)1、2、3、4題
(設(shè)計(jì)意圖:作為課本上的練習(xí)題的完成達(dá)到檢測(cè)學(xué)生對(duì)本節(jié)課知識(shí)的掌握情況,從而幫助學(xué)生查漏補(bǔ)缺,鞏固基礎(chǔ)知識(shí)。)
2、學(xué)以致用:
(設(shè)計(jì)意圖:讓書生體會(huì)數(shù)學(xué)知識(shí)和實(shí)際生活的緊密聯(lián)系)
如圖,是西安半坡博物館屋頂?shù)慕孛鎴D,已經(jīng)知道它的兩邊AB和AC是相等的、建筑工人師傅對(duì)這個(gè)建筑物做出了兩個(gè)判斷:
①工人師傅在測(cè)量了∠B為37°以后,并沒(méi)有測(cè)量∠C,就說(shuō)∠C的度數(shù)也是37°。②工人師傅要加固屋頂,他們通過(guò)測(cè)量找到了橫梁BC的中點(diǎn)D,然后在AD兩點(diǎn)之間釘上一根木樁,他
請(qǐng)同學(xué)們想想,工人師傅的說(shuō)法對(duì)嗎?請(qǐng)說(shuō)明理由。
設(shè)計(jì)意圖:運(yùn)用所學(xué)知識(shí)解決實(shí)際問(wèn)題,引導(dǎo)學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,進(jìn)一步加深學(xué)生對(duì)等腰三角形性質(zhì)的理解和運(yùn)用;從數(shù)學(xué)回到實(shí)際生活,自然地滲透數(shù)學(xué)作用于實(shí)際問(wèn)題的思想。
3、課堂小結(jié)
今天我們學(xué)習(xí)了什么?你覺(jué)得在等腰三角形的學(xué)習(xí)中要注意哪些問(wèn)題?設(shè)計(jì)意圖:幫助學(xué)生回顧,歸納,鞏固所學(xué)知識(shí)。A(六)作業(yè)布置、深化提高:
1、課本P84:習(xí)題13、31、2、3;(必做題)
2、(思維發(fā)散)選做題
已知:如圖△ABC中,AB=AC,CE⊥AEE1于E,CE=BCB2
求證:∠ACE=∠BC